i A 'I‘m!"r"mﬂ';ﬂ’ L EE.;,H il ‘d ?5‘. il . "ﬁ’_"ml“

Second Edition

Insights on

COMPUTER
GRAPHICS

s

{
I

U, PU, PoU, KU

Written by: Edited by:
Er. Shree Krishna Sulu Er. Sujan Shrestha

Insights on

COMPUTER GRAPHICS

Published by
Written by

Edited by

Copyright © :

First edition
Second edition

Computer

SYSTEM INCEPTION

Er. Shree Krishna Sulu

Er. Sujan Shrestha

Publisher

All rights reserved. This book is sold subject to the
condition that it shall not, by way of trade or otherwise,
be lent, resold, hired out, or otherwise circulated
without the authors' prior written consent in any form of
binding or cover other than that in which it is published
and without a similar condition including this condition
being imposed on the subsequent purchaser and without
limiting the rights under copyright reserved above, no
part of this publication may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any
form or by any means (electronic, mechanical,
photocopying, recording or otherwise), without the prior
written permission of the copyright owner of the book.

1 2019 AD
1 2020 AD

:Creation Gﬁphics
" Bagbazar, Kathmandu

'PREFACE TO THE SECOND EDITION

"Insights on Computer Graphics" is a textbook of
computer graphics for the students of Bachelor level in
Electronics and Communication, and Computer
Engineering. Computer graphics is widely used in almost all
aspects of the life; entertainment to medical treatment, art
and commerce to office automation, business visualization
to scientific research, computer aided design to virtual
reality. And, the daily use of smart mobile, tab, laptop,
digital display, smart TV, etc. is tremendously increasing.
So, the study and field of computer graphics is widening day
by day. The concept and principle of computer graphics
systems have been explained step by step in this book in
order to make easier to understand.

A large number of numerical of previous IOE exam
questions have been solved to develop an efficient
understanding of the related topics. The Code in C of some
algorithms is also depicted to make clear about the
programming in Computer Graphics.

I would like to thank those teachers and students (especially

Shyam Dahal and Shiva Ram Sulu) whose inspiration
assisted me in bringing this book.

With the hope, students and concerned person will be
benefitted, I pray for a prosperous and peaceful Nepal.

Er. Shree Krishna Sulu
Feb. 2020

CONTENTS

Chat INTRODUCTION AND APPLICATION

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
19
1.10
1.11
1.12
1.13
1.14

IAtrOdUCHION.ocvecveasesmnranasasiis

1
2
Vector GIAPRICE o samumemmemsorionsmmmsersmmsson sssmeirsisosssoisiieriaisy3
Computer Graphics and Image Processingcoooovvvuvinincinre. 5
5
8

History of Computer Graphicsooeevvceecnvincsiiensiiienn,
Uses of Computer Graphics...........

General Term and Terminologiesccoeveevivvvvnnnesssnssvarnnnnn. 1 2
Hardware Concepts... T SR 1B
Refresh Cathode Ray Tube .. TR gt e LT DL 3 |
Raster and Random (Vector) Scan D;splay e R e
Color CRT Monitors... I sisivan il
Raster Scan Display Systemf Architecture/ Technology Vit seagiior 2l
Random Scan System/Architecture/Technology...........................32
Flat Panel Displays.....ccovcinesesnine

SCAN CUNVERSION

Output Primitives e N T O 1
Line-Drawing AIgOTithimccoovvieimimrnmimnnmn s

31
32
33
34
35

Two-Dimensional Viewing.c.ccocerrerinrerinniemsnsssresncessee: 984
Coordinate Representation...........ccoeerieieninsieiinnssiscsesinssssenes 94
The Viewing PIDEING: .. s im0

Window to Viewport Mapping (Coordinate
Transformation)c..c.coeeeneernncren. N 98

3,10 Clipping OPerationscccemmrmmeamimsssssmisersssssssssssssesssscsnceee: | 02

Chapter 4

THREE-DIMENSIONAL TRANSFORMATIONS

4.1

Thrce_-Dimensiona! Transformationsc.cceeemirssresseesanans 125

Chapter 5

CURVE MODELING

Spline Representations...
Hermite Cubic SPHNE.......ocimmmmmmmmmmsmenmmsres s

SURFACE MODELING

6.1
6.2
6.3
6.4

Three-Dimensional Object Representations.........c.owevsiissimunne 186

Po!Srgon Surfaces

8o T 1) R
P1ane EQUALIONScoursmmiuemsersesseeserssssssssamsmsssassasisssasimsesssssessnessss

VISIBLE SURFACE DETERMINATION

7.1

7.2
73
74
75

Visible Surface Determination (Hidden Surface
EIIINAtION) ..voosereereecsreesassssemsssssasssssamsmsnsssss s s s et eens

Back-Face Detection
Depth-Buffer Method (Z-Buffer)
A-BUFTEr MEtRO ... ciurireusmrnmsesesmsassssssmmmmansssssassissonssas s sssess
Scan-Line Method :

—4

MNATION AND SURFACE RENDERING METHOp

g1 [Ilumination Models and Surface Rendering Technique........... 204
82 Light SOUMCE..oooviiimmimiinimmsssssnin st 205
83 Basic [llumination MOdelSccccoovspoevnnnivivnnnvsnsnnnsinnn. .. 207
8.4 Surface Rendering Methods............ccoeoivomicrcrinc, w215
INTRODUCTION TO OPENGL .
9.1 INOQUCHON. .ccocvveveeeesinriintti e sss s s sssres 224
9.2 OpenGL LibIBries wemmmemssisssscinneninnimnsiiesincssssoescos oo 225
93" OpenGL Program StUCIIe ..%....vvveroooeseo 226
9.4 Open GL Geometric Primitives,
958 - COLOTCOMMBIL. .. .cononnssonssinamsess ssmsmeanissin e s
9.6 OpenGL VIEWINg.....ooerviicicccccins s
9.7 Lighting in OpenGL.........oovummmiueneenirnnirisn e
Bibliography; 251
Lab Plan 252

Introduction and Application

1.1 Introduction

Graphics is an image or a visual representation of an object
and the visual representation or image displayed on a computer
screen is known as computer graphics. More precisely, computer
graphics is the field or branch of science and technology related to
generation (creation), storage and manipulation of graphics
(images or pictures) of objects using computer i.e. using hardware
and software. Objects may be the concrete real world objects or the
abstract and synthetic objects such as mathematical surface,
engineering structure, architectural design, survey results, etc. In
othier word, graphics means to plot some points on graph to make
an image. Computer graphics means to plot some pixels (points) on

a computer screen to make an image. Pixel or picture element is

the elementary part of the computer screen. We see every day the

images created by using computer in books, magazines, movies,

TV, ete.

Computer graphics is the rendering (servicing or making)
tools for the generation and manipulation of images. These tools
include both hardware and software. '

Hardware comprises monitor, printer, plotter (that display
graphics) and input devices includes mouse, light pen, keyboard,
scanner, etc. Software tools refer to the collection of graphic's
routine.

Computer graphics = Data structure + Graphics algorithm
+ Language
Data structure means those data structure that are suitable for
computer graphics. Graphics algorithm refers to algorithm for
picture generation and transformation. Language means high level
language for generation of graphics or pictures of objects.

Computer graphics can be either two-dimensional or three-
dimensional. Digital graphic files are divided into two categories:

Introduction and Application | 1

i. Raster graphics
ii. Vector graphics

1.2 Raster Graphics

A raster graphic or image is made up of pixels (screen
point). Raster graphics are composed of a simple grid of pixels
The pixel can be of different color. Raster graphics are I"E.‘T‘ldere(i
images on a pixel-by-pixel basis and they are well fit when
handling shading and gradients. A raster graphic, such as a gif or
jpeg. is an array of pixels of various colors, which together form an
image. Raster graphics are the most common and are used for
digital photos, web graphics, icons, and other types of images.

‘then a raster image is scaled up, it usually loses quality. A
raster image can be enlarged by either adding more pixels or
enlarging the size of the pixel. In either way original data is spread
over a larger area at the risk to losing clarity.

Raster graphics based file format:

Jpg Joint Photographic Experts Group (JPEG)
.png Portable Network Graphics (PNG)

.gif Graphics Interchange Format (GIF)

Aiff Tagged Image File Format (TIFF)

.psd Adobe Photoshop File

.pat Corel Paint File
.pdf Poriable Document Format (PDF)

raﬁtgl: veﬁor ﬂ Jﬁ |

Raster Vector
peg gf .png vy

(a) ()]
Figure 1.1: Raster and vector graphics

2 Wmonm-m

Advantages of raster graphics

Every pixel in a raster image can be of different color
therefore we can create a complex image with any kind of color
changes and variations. Raster graphics are useful for creating rich
and detailed images.

. Almost any program can work with a simple raster file. The

most recognized application that handles raster graphics is Adobe
Photoshop however there are also several other image editing
software options out there to choose from.

Disadvantages of raster graphics

It looks grainy, distorted, and blurred when raster images are
scaled up. This is because raster images are created with a finite
number of pixels. When we increase the size of a raster image, the
image will increase in size. However, because there are no longer
enough pixels to fill in this larger space, gaps are created between
the pixels in the image.

Raster images hold more data and may be slower to edit.
Raster files are often quite large. Raster files contain all the
information for every single pixel of the image. Each of these
pixels has an X and Y coordinates as well as color information
associated with it. Therefore, raster graphics files tend to be very
large.

Raster graphics are not great for embroidery. Because raster
images are based on square pixels, the embroidery may look like it
has jagged edges. If we want to embroider an image with smoother
edges, it is best to use vector graphics instead of raster graphics.

1.3 Vector Graphics

Vector graphics (also called geometric modeling or object
oriented graphics) is made up of geometrical primitives such as
points, lines, curves, and polygons which are all based upon
mathematical equations fo represent images in computer graphics.

A vector graphic can be scaled to any size without losing quality.

Vector graphics are composed of paths which may be lines,
shapes, letters, or other scalable objects. A vector graphic, such as

Introduction and Application | 3

an .eps file o Adobe Illustrator file, is composed of paths, m_ lines,
(hat are either straight or curved. The data file for a vector image
contains the points where the paths start and end, how much the
paths curve, and the colors that either border or fill the paths,
Vector graphics are not made of pixels, the images can be scaled to
be very large without losing quality. They are often used for
creating logos, signs, and other types of drawings. Unlike raster
graphics, vector graphics can be scaled to a larger size without
losing quality. Raster image's dimensions are measured in pixels
(pixel per inch-ppi). Vector graphics are resolution independent,

The most recognized applications which handle vector based
graphics are Adobe illustrator, Macro media freehand and Corel
draw. Vector graphics are generally used for line art, illustrations,
and embroidery.

All modern current computer video displays translate vector
representation of an image to a raster format. The raster image,
containing a value for every pixel on the screen, is stored in memory.

Probably the most common example of vector-based files
that we use daily without even realizing is font files.
Vector graphics based file format:

.eps Encapsulated PostScript File (EPS)

svg Scalable Vector Graphics (SVG)

.ai Adobe Nustrator File

.cdr Corel Draw File _

pdf Portable Document Format (PDF)

Advantages of vector graphics:

Vector files are small because they contain a lot less data
than raster files. Vector graphics are more flexible than raster
graphics because they can be easily scaled up and down without
any loss to the quality of the image. Vector graphics have smoother
lines in comparison to raster graphics.

Disadvantages of vector graphics:

_ If there are small errors or faults in a vector graphic, these
will be seen when the vector image is enlarged significantly.

Vector graphics can’t display the abundant color depth of a raster
graphic.

4 | Insights on Computer Graphics

- 1.4 Computer Graphics and Image Processing

The difference between computer graphics and image
processing can be studied with the help of following table.

Computer graphics

Image processing

It is the field related to the|l.

generation of pictures using
computers.

It applies technique to
modify or interpret existing
pictures.

It synthesizes pictures from|2.

mathematical or geometrical

It analyzes picture to derive
description in mathematical

" models. or geometrical forms.

3, It includes the creation(3. It is the part of computer
storage, and manipulation of| graphics that handles image
images of objects manipulation or

interpretation

4. B.g., drawing a picture . E.g., making blurred image

visible. :
Pictures Computer Graphics Mathematical
e z
Drawing or Geometrical
Etc Image Processing Models
: —_—

Figure 1.2: Computer g;'aphics and image processing
15 History of Computer Graphics

SR

In 1950's outputs were via teletypes, line printer and

‘Cathode Ray Tube (CRT). Using dark and light character,

_ pictures were reproduced.

e _In 1950, Been Laposky created the first graphic images on
oscilloscope generated by an electronic (analog) machine.
The image was produced by manipulating electronics beams
and recording them onto high speed film.

In 1951, UNIVAC-], the first general purpose commercial
computer; crude hardcopy devices, and line printer were
invented. MIT-whirlwind computer, the first to display real
ﬁmevideomdcapableofdisp]nﬁngrealﬁmemxtaqi
graphic on a large oscilloscope screen was developed.

Introduction and Application | 5

In 1960's, modem interactive graphics was begun. Outpus
were vector graphics and intera-::tl\r'e_ .graphlcs, th the
problems were the cost and inaccessibility of machine, |p
middle 1950's SAGE (Semi-Automatic Ground
Environment) air defenses system was developed. It was the
first to use command and control CRT display consoles on
which operator identifies target, with light pen (hand —held
pointing devices that senses light emitted by objects on
screen) '
e In 1960, William Fetter, coined the computer graphics to
" describe new design methods.
e In 1961, Stove Russel made space wars, first video/computer
" game 3
_In 1963, Douglas Englebart developed first mouse. Ivan
" Sutherland made sketch pad, interactive C.G. System, a
man-machine graphical communication system, it features:
© pop-up menus, constrained -based drawing, hierarchal
modeling, utilized light pen for interaction
¢ He developed the dragging, rubber banding and
transforming algorithms, He introduced data structures for
storing, He is considered data founded of computer graphics.

://h 1964, William Felter developed first computer model of a

¢k Bresenham developed line drawing algorithm.
special CRT, the direct view
| and mouse, a simple computer
graphics affordable.

loped area subdivision
Bell labs developed
bits per pixel. CAD

pioneering efforts that showed the utility of graphical
interaction in -the interactive design cycles common in
engineering.

A number of commercial products using these systems were
appeared. But hardware was expensive. '

In the early 1970's, Output start using raster displays,

graphics capability was still fairly chunky.

_In 1972, Nolan kay Bushnell Pong made video arcade game.

In 1973, John whitiney Jr. and Gary Demos made
“Westworld”, first film with computer graphics.
In 1974, Edwin catmuff developed texture mapping and z-
buffer hidden surface algorithm. James Blim developed
curved surfaces, refinement of texture mapping.

" In 1971, Rendering model Gouraud shading was developed.

In 1974 — 77, .Phong shading (rendering model) was
developed.

In 1977, Steve Wozmak made Apple II, color graphics
personal computer.

In the 1980's, outputs were built in raster graphic, bitmap
image and pixel, personal computers cost decrease
drastically, track ball and mouse became the standard
interactive devices.

1980's, Artists and graphic designers preferred to use

' Macintosh and PC's.

In late 1980's, Artists and graphic designers preferred to use
Macintosh and PC.,

In 1982, Ray tracing (Illumination based rendering method)
'w?s developed. In 1982, Steven Lisberger made ‘Tron’, first
Disney movie which made extensive use of 3-D computer

graphics. John Walkner and Dan Drake developed Auto
CAD

In 1983, Jaron Lanier made 'Data Glove", a virtual reality

film features a glove installed with switches and sensors of
detection hand motion.

Introduction and Application | 7

In 1084, Wave from tech developed Polhemus, first 3py
. n $
. graphics software

e In 1987, IBM introduced VGA(Video Graphics Array)

« In 1989, Video Electronics Standard Association (VESA)
formed SVGA (Super VGA)

. In 1990's, since the introduction of VGA and SVGA
personal computer could easily display photo realistic
images and movies 3D image rendering were become the

main advances and it stimulated cinematic graphics
application.

. In 1990's, since the introduction of VGA and SVGA,
personal computer could easily display photo realistic
images and movies. 3D image rendering were become the
main advances and it stimulated cinematic graphics
applications.

¢ In 1990, Render man system that provides fast accumulate

and high quality digital computer effects was developed.

® In 1992, Silicon graphic developed open GL specification.

. In 1993, Mosaic, first graphic web browser and Jurassic
park, a successful CG fiction film was made.

L]

In 1995, 'Toy story!, first full length computer generated
feature film was made.

In2003, ID software developed Doom graphics engine.
16 Uses of Computer Graphics

X
L]

naj n areas of computer graphics are display

data to scientific visualization), design
user interfaces (GUI to virtual
academic purpose), etc.

3.

' Nowmiays, the necess

Computer aided design and drafting
Scientific and business visualization
Simulation and virtual reality
Entertainment

Art and commerce

W00 =3 On L ol

Civil Engineering applications
10.Medical applications
11.Internet

.User Interfaces

The interface between the human and the computer has been
radically changed by the use of computer graphics. Most
applications have a Graphical User Interface (GUI) for user
friendly and interactive operation. Today’s software has user
interfaces that rely on the desktop window systems to
manage multiple simultaneous activities and on point and

click facilities to select items menu, icon, and obj

ects on the
sCreen.

Plotting or visualization of measurement data

Graphics is extensively used in plotting 2D and 3D graphs
such as the histograms, bar and pie charts, the task
scheduling charts of mathematical, physical, and economic
functions. These plotting or visualization of measurement
data are useful to analyze meanin

gfully and concisely the
trend and pattern of complex data.

Office automation and electronic publishing

ary document that contains text, tables,
graphs; drawings, pictures can be easily printed or saved as
electronic (softcopy) document. The office automation and
electronic publishing became possible by the development of
computer graphics.,

Computer aided design and drafting

A major use of computer graphics is in design process.
Computer graphics is used to design components and
Systems (including building and other structural design) of
architectural systems, mechanical, electrical, electrochemical

: lntroductkmm

and electronic devices, auto mobile bodies, aircrafs,
watercrafts, spacecrafts, very large scale integrated (VLS
chips, optical systems, and telephone and computer
networks.

Figure 1.3: Computer aided design

5. Scientific and business visualization
Scientific visualization means generating computer graphics
for scientific works and medical data sets. Business
" visualization is generating - computer graphics for
nonscientific data sets such as economic data set.
Visualization makes easier to understand the trends and
pattern inherent in huge amount of data sets. It would
otherwise be almost impossible to analyze those data
numerically. '

6. Simulation and virtual reality

. One of the most impressive and familiar uses of computer
graphics is simulation and virtual reality. Simulation is the
imitation of the conditions like-those, which is encountered

* in real life. Virtual reality is an interactive computer-

m being in danger at the
. Astronauts’ simulator, flight

o

7.

simulator, air traffic control simulator, and heavy duty
vehicle simulator are some of the mostly used simulators in
practice.

Entertainment

Computer graphics is used in making games, special effects in

movies, music videos, television shows, etc. Sometimes, the

graphics scenes are displayed totally using computer graphics

and sometimes, graphics objects are combined with the real
actors and live scenes. Computer and video games such as
FIFA, Formula-1, Doom and Pools are few to name where
computer graphics is used extensively. Disney movies such as
Lion King, The Beauty and the Beast, and other scientific
movies like Star Trek are the best examples of application of
computer graphics in the field of entertainment.

Art and commerce

Computer graphics are used in both fine art and commercial
art. The ability to create any shape and play with any color
with the help of computer graphics opened the new realm of
art and commerce. Computer graphics is used to produce a
picture that expresses a message and attract attentions such
as a new model of g car moving along the ring of the Saturn.

These pictures are frequently seen at transportation terminal,
super markets, hotel, etc. The slide production for
commercial, scientific, or education presentation is another
cost effective use of computer graphics. One of such
graphics package is Power Point.

Civil engineering applications

Civil engineering applications include cartography, GIS
(geographical information system), etc. Cartography is a
subject which deals with the marketing of the maps and
chart. Computer graphics is used to produce both accurate
and schematically representation of geographical and other
natural phenomenon from measurement data. It includes
geographic map, oceanographic chart, weather map, color
map, and population density map. Surfer is one of such
graphic packages which in extensively used for cartography.

Introduction and Application | 11

10. Medical applications
Computer graphics has become a powerful tool for diagnos;,
and treatment in medical fields. X-ray, video x-ray, compley
operation, etc. are done using computer graphics method ang
techniques in medical field.

11. Intermet :
There is a large amount of multimedia content available o,
net. Internet became famous because of the development of
computer graphics.

1.7 General Term and Terminologies

1. Pixel (or pel) B
Pixel (picture element) is defined as the smallest screen
element. It is the smallest piece of the display screen which

can be controlled. The screen point is controlled by setting
the intensity and color of the pixel.

2. Aliasing
Real objects or lines, polygon, edges are continuous but a
raster device is discrete. The digitization of continuous
signal produces jaggies ie., a staircase problem. The
sampling process digitizes the coordinate points and it
produces staircase appearance. This process of distortion of
information due to sampling is called aliasing.
3. Antialiasing (
' It is defined as the process which compensates the
It is & hardware based antialiasing technique in which the
ics system shifis individual pixels from their normal
by a fraction (typically 0:25 and
ce 1 the pixels. By moving
nique is very effective
it reducing the

Interlacing

It is used when the perpetual threshold is greater than the
frequency of standard line voltage. If refresh rate is greater
than phosphor’s persistence, then moving objects become
blurred. If refresh rate is lesser than phosphor’s persistence,
then it creates flickering. Interlacing is used to break the
raster line into two sweep patterns consisting of half the
number of raster lines in original patterns.

Bit depth (or color depth)

It is defined as the number of bits needed (assigned) to a
pixel in the image. It specifies the number of colors that a
monitor can display. For example, if a pixel'is denoted by a
byte (8 bits), then the total number of color that can be
displayed per pixel is 2* = 256.

Fluorescence and phosphorescence

When the electron beam strikes the phosphor-coated screen
of the CRT, some of this energy is dissipated as heat but the
rest of energy is used to make the electron of the phosphor
atoms to jump to higher quantum energy level. Fluorescence
is the light emitted by very unstable electrons while the
phosphor is being struck by electrons. Phosphorescence is
the light given off by stable excited electron to their
unexcited state once the electron beam excitation is
removed. Fluorescence usually last for a fraction of
microsecond. Most of the light emitted is phosphorescence.

Persistence

Persistence is how long phosphors continue to emit light
(that is to have excited electron returning to ground state)
after the CRT beam is removed. More precisely, persistence
is the time to decay to 1/10™ of its original intensity of the
emitted light. That is, how long phosphorescence persists is
the persistence. Lower persistence phosphors require higher
refresh rates to maintain a picture on the screen without
flicker. The phosphor with low persistence is useful for
animation. A high persistence phosphor is useful to highly

Introduction and Application | 13

compléx static pictures. Graphics monitors are usually
constructed with persistence in the range from 10 to 60
micro second.
9, Refresh rate
The light emitted by the phosphor fades very rapidly. S,
some method is needed for maintaining the screen picture,
One way to keep the phosphor glowing is to redraw the
picture repeatedly by quickly directing the electron beam
back over the same points. Refresh rate is the number of
times the image is redrawn per second to give a feeling of
picture without flick. It is the frequency at which the content
of the frame buffer is sent to the display monitor. Refresh
rate is usually 50 frames per second. Refresh rate above
which_ﬂicku‘iﬁg stops is called critical fusion frequency
(CFF). The factors affecting CFF are persistence, image
intensity, ambient room light, and wave length of emitted
light.
10. Horizontal scan rate
The horizontal scan rate is the number of scan lines per
second. The rate is approximately the product of the refresh
rate and the number of scan lines.
11. Resolution
Resolution is the maximum number of pixels (points) that
can be displayed horizontally and vertically without overlap
on a display device. More precisely, it is the number of
pixels per unit length that can be placed horizontally and
- Vertically. It is the number of pixels in horizontal direction

intensity has a gaussian
So, two adjacent spots
nct as long as their

12.

13.

Intensity 60% -/

1D1| 7 |

Figure 1.4: Gaussian distribution of spot intensity
ji) Intensity: As the intensity of electron beam increases,
the spot size on the display tends to increase because of
spreading of energy beyond the point of bombardment.
This phenomenon is called blooming, and consequently,
the resolution decreases.
Aspect ratio
It is defined as the ratio of vertical points to horizontal points
necessary to produce equal length lines in both direction on
the screen. Aspect ratio 3/4 means that a vertical line plotted
with three points has the same length as a horizontal line
plotted with four points. It is the ratio of image's height to its
width.
600x800 pixels in display has the aspect ratio
600 3. :
AR=g5p=3=34
Horizontal and vertical retrace

Horizontal retrace means at the end of each scan line, the
returning of the electron beam to the left side of the screen to
begin displaying the next scan line. The return to the left of
the screen, after refresh each scan line is called the
horizontal retrace of the electron beam. At the end of each

frame (5—10 of a second), the electron beam returns t6 the top

left corner of the screen to begin the next frame. It is called
vertical retrace.

Introduction and Application | 15

Figure 1.5: Scan line, horizontal retrace, and vertical retrace

14. Refresh buffer/ frame buffer/ bit map/ pix map:

In raster-scan system, the electron beam is swept across the
screen, one Tow at a time from top to bottom. As the electron
beam moves across each the beam intensity turned on and off
to create a-pattern of illuminated spots. Picture definition is
stored in a memory. The memory is called the refresh buffer or
frame buffer. This memory area holds the set of intensity values
for all the screen points. Stored intensity values are then
retrieved from the refresh buffer and 'painted' on the screen one
row (scan line) at a time. Each screen point is referred to as a
pixel or pel (picture element). On black and white system with
one bit per pixel, the frame buffer’is commonly called a bit
map. For system with multiple bits per pixel, the frame buffer is
commonly called a pixmap. :

4bit 16 0.5 Standard

- 8bit 256 1 256 color mode
: 65,536 2 High color
16,717,216

3 True color

used to scan an object. A
e position of a movable

I —p———— —
e

stylus (a pencil shaped device) or a puck (a mouse like
device with cross hairs for sighting positions) held in the
user's hand. These discrete co-ordinate positions can be then
joined with straight line segments to approximate the shape
of original object. A tablet is a flat surface and its size varies
from 6 by 6 inches up to 48 by 72 inches or more. The
accuracy of the tablet usually varies from about 0.2 mm on
desktop models to about 0.05 mm or less on larger models.

Types of tablet:
i. Electrical tablet

ii. Sonic (acoustic) tablet

iii. Resistive tablet

i) Electrical tablet
In electrical tablet, a rectangular grid of wires is
embedded in the tablet surface. Electromagnetic pulses
are generated along the wires and electric signal is
induced in a wire coil in the stylus or puck. The strength
of the signal induced by each pulse is used to determine
the position of the stylus. A signal is sent to the computer
when the tip of the stylus is pressed against the tablet or
when any. button on the puck is pressed. The information

provided by the tablet repeats 30 to 60 times per second.
Input Devices: Tablets

aisl's digihizer system
with cordiess stylus

deskiop lablet with & b -
16-button hand cursor |arge tablet with teskiop tablet
hand cursor with stylus

Figure 1.6: Tablets

ii) Sonic (acoustic) tablet
Sonic (acoustic) tablet uses sound waves to detect the
stylus position. Microphone is used to detect the sound
emitted by an electrical spark from a stylus tip. The
position of the stylus or the co-ordinate values is

Introduction and Application | 17

2.

calculated using the delay between when the spark oceurg
and when its sound arrives at each microphone. The ma;,,
advantage of sonic tablet is that it doesn't require |,
dedicated working area as the microphones can be placeg
on any surface 10 form the tablet work area. Thjg
facilitates digitizing drawing on thick books.
iiily Resistive tablet

Resistive tablet is a piece of glass coated with a thin layer ¢
conducting material. When a battery is powered, stylus i
activated at certain position. The device emits hig)
frequency radio signals which induces the radio signals oy
its conducting layer. The strength of the signal received at
the edges of the tablet is used to calculate the position of the
stylus. Several types of tablets are transparent, and thus can
be backlit for digitizing x-ray films and photographic
negatives. The resistive tablet can be used to digitize the
objects on CRT because it can be curved to the shape of the
CRT. The mechanism used in the electrical or sonic tablets
can also be used to digitize the 3D objects.

Touch panels

T_he touch panel allows the user to select the screen positions

directly with the touch of a finger to move the cursor around

the screen or to interact with the icons. There are three types

of touch panels:

i. Optical touch panel

ii. Electric touch panel

iii. Sonic (acoustic) touch panel -

i. Optical touch panel

w touch panel employs a series of infrared light

emitting diodes (LED) along one vertical edge and along
horizontal wﬂf the panel. The opposite vertical

ii. Electrical touch panel

" Electrical touch panel consists of slightly separated two
transparent panels one coated with a thin layer of
conducting material and the other with resistive material.
When the outer plate is touched with a finger, it is forced
into contact with the inner plates by creating the voltage
drop across the resistive plate which is then used to
calculate the co-ordinate of the touched position.
Sonic (acoustic) touch panel
In sonic (acoustic) touch panel, high frequency sound
waves traveling alternately horizontally and vertically are
generated at the edge of the panel (glass plate). Touching
the screen causes part of each wave to be reflected back to
its source. The screen position at the point of contact is
then calculated using the time interval between the
transmission of each wave and its reflection to the emitter.

Light Pen

It is a pencil shaped device used to select the co-ordinates of
a screen point by detecting the light coming from the points
on the CRT screen. In raster display "Y' is set at Yy and X'
changes from 0 to Xy in the first scan line. For the second
line, "Y' decreases by one and 'X' again changes from 0 to
X pax and 50 on. When activated light pen sees a burst of light
at certain position as the electron beam hits the phosphor
coating at that position, it generates an electric pulse. This is
used to save the video controller's X' and "Y' registers and
interrupt the computer. By reading the saved value, the
graphics package can determine the co-ordinates of the
position seen by the light pen.

Keyboard

Keyboard is used for entering text. It consists of
alphanumeric key, function keys, cursor-control keys, and
separate numeric pad. It is used to move the cursor, to select
the menu, item, predefined functions. In computer graphics,
keyboard is mainly used for entering screen co-ordinate and
text to invoke certain functions. Nowadays, ergonomically

jiii.

Introduction and Application | 19

yboard) with removable

omic ke
(erge” f cach half of the

igned keyboard (¢
d:?;lﬂrests is available- The slope
: pe adjusted separately-

keyb(}&l'd can

5, Mouse

Mouse is a small old device used to position the cursor

on the screen. It ca0 be picked up, m'oved s Sp::i and.t_hen
put down again without any "_ha”ge in the Tep= pOSI.tfon'
For this, the computer maintains the current mouse position,
which 18 incremented OF decremented by the mouse
movements. Following are the mice, which are mostly used
in computer graphics:
i. Mechanical mouse
Whmmﬂﬁinﬁieboxofihismhmﬁcal mouse is moved,
a pair of orthogonally arranged toothed wheels, each place
inbetwwnLEDandaphotodetectﬂr. interrupts the light
paﬂn.Thenumbe!sitintemlpB,sogenemied,musedto
report the mouse movements to the computer.
ii. Optical mouse
The optical mouse is used on a special pad having grid of
an alternating light and dark lines. A LED in the bottom
of the mouse directs a beam of light down onto the pad
from which it is reflected and sensed by the detectors on
the bottom of the mouse. As the mouse is moved the
reflected light beam is broken each time a dark li
crossed. The number of pulses erated, b
e ofﬁies S0 gener: , which 18
_ number crossed are used to report
mouse movements to the computer.
s ; :
e - &eﬂmm w) is an electronic
printed barcodes. Like a flatbed scanner,
source, a lens, and a light sensor.
mwlm into electrical
‘barcode. readers contain
” ode's image data

TRE——

7. Data glove
A data glove is an interacti
worn on the hand, which facilitates tactile s
in robotics and virtual reality. Data gloves
al devices used in

ve device resembling a glove
ensing and fine-

motion control

are one of several types of electromechanic:
e sensing involves simulation of

haptics applications. Tactil
the ability to perceive

the sense of human touch and includes
ar force, temperature, and surface texture. Fine-
motion control involves the use of sensors to detect the
movements of the user's hand and fingers and the translation
of these motions into signals that can be used by a virtual
hand (for example, in gaming) or a robotic hand (for
example, in remote-control surgery)- '

19 Refresh Cathode Ray Tube
Magunetic

pressure, line

Pins
Coated Screen

Figure 1.7: Basic design of a magnetic-deflection CRT

Figure 1.8: Operation of an electron gun with an accelerating anode

vacuu;: c;lzzlstsm %f a C_RT alqng_ with “control circuits. CRT is a
vacum g ms:h e with t_he _dlsplay screen at one end and
e control circuits at the other. Inside of display

Introduction and Application | 21

T R——

or which emits light for 3

: i hosph
screen 18 a,sP@‘f:eT]::;n;; ia:,]siﬁ of Electrons. The color of light
;’;3 Ol:ﬂfﬁem;md vary from 0n€ type of phosphor t0 another.
1. Electron gut
Flectron gun is made up of heated metal cathode and a
control grid.
i. Heated metal cathode
Heat is supplied 10 the cathode by directing a current
hrough a coil by Wire: called heating filament, inside the
cylindrical cathode structure. This causes electron to be
wpoiled off” the cathode surface.

ji. Control grid

Control grid is responsible for controlling the brightness

of a display. BY setting voltage level on control grid, the
brightness emitted by phosphor coating depends on the
number of electrons that strike the phosphor coat.

3. Accelerating anode
In the vacuum inside the CRT envelope, the frecly

negatively charged electrons are accelerated towards the
or coating by a high positive voltage (15000-
20000).This high positive voltage can be generated by using

3. Focusing system/focusing anode
::uwed m‘force-ihe electron beam to converge into
O w::t :r::: it strikes the phosphor coat. Otherwise, the
. L tepdewh other and the beam would spread
. - Whﬂ”.._.&_e-sgeen.'fhmmtwqtypgs of
- ¢ focusing and magnetic field
mm is used in high

4. Deflection system

m is needed to di

Deflection syste rect the electron beam

towards a particular point on the screen- It is done in tWO
electrostatic deflection system and magnetic
When electron beam passes through the
| deflection plates, it is bent OT
between the plates. The
scan from left to right

ways:
deflection system.
horizontal and vertica
deflected by the electric fields
horizontal plates control the beam t0
and retrace from right to left (horizontal retrace).The vertical
plates control the beam t0 g0 from the first scan line at the
top to the last scan line at the bottom and retrace from the

bottoni pack to the top (known as vertical retrace).

1.10 Raster and Random (V ector) Scan Display

1.10.1 Raster Scan Display

<

{&)
' @
Figure 1.9: Raster scan display
Most common type of graphics monitor are employing a
CRT (based on television technology). The electron beam is

en one row at a time from top to
a called

e

swept across the scre
bottom. Picture definition is stored in memory are
“reﬁ'esl_l buffer” or “frame buffer”. The set of intensity
values is retrieved from refresh buffer and "painted" on the
screen one row at a time. Each screen point is referred as a

"pixel" or "pel". For black and white system, each screen

Introduction and Application | 23

ted by one bit either "on" or "ofp

ixel}ti::pm.‘:: onal bit is needed to represent sing|,
or S0 e pil i high quality systems)-For black ang
Pu;el(z I i bit per pixel, the frame buffer |

white system for system with multiple bits p,
wh "pix_mal?"- Normal I'Cfrg_.\h

S ique called winterlacing" to doubl,
the refresh rate. n this case, only half of the scan lines in 4
umbered lines

mnmﬁﬁhd“aﬁm" first the odd n
aumbered lines. Thus, the screen |

and then the cven hus,
o bottom in half time it would have
all the scan line. This effect is quitc

1.10.2 Random (Vector) Scan Display

9€
90

: n display, electron beam is dircctc
screen where a picture is to be
copy device). In this system.
of lines to be displayed.

drawing each

component line in turn.

commands have been processed, the

the first line command in the |
designed to draw all the components ©

times eaci second.

1.10.3 Differenc

e between Raster Scan Disp

Random (Vector) Scan Display

Base of difference

S
1. Electron beam

I
2. Resolution

|
3. Picture

Raster scan display

I
The electron beam is
swept across the screen
one row at a time from
top to bottom.

It has lower or poor
resolution because
picture definition 18
stored as an intensity
value.

Picture definition is
set of]

After all line drawing
system cycles back to

jst. Random scan displays ar¢

f a picture 30 to 60

Random (vector)
scan display

The electron beam 1s
swept to the parts of]
the screen where ai
picture is to be drawn.

It has high resolution
because It StOTes
picture definition as 2
set of line commands. |

Picture definition is|
stored as a set of line|

definition stored as a
intensity values for alllin a display list or|
screen points (pixels) in file. !
a refresh buffer.

4. Realistic The capacity of the[These systems are|

display system to store/designed for lme-
intensity values for/drawing and can'
pixels make it well display realistic|
suited for realisticshaded scenes.
display with shadow
and color pattern.

5. Image drawing

Screen points or pixels
are used to draw an
image.

Mathematical
functions are used to
draw an image.

6. Cost

They are cheaper than
random display.

It is more expensive
than raster-scan
display.

introduction and Application | 25

A =]
e AL
Base of difference Raster scan display

Lt b
7. Refresh rate

—_——
Random (vector)
scan display

By i R r—
Refresh rate is 60-80|All components are
drawn 30 to 60 times

= : per second.
i i doesn't
It uses interlacing. It use
k- B interlacing.
_______._——-—'_________—_d =
e ——————— | 2 e .
9, Editing Editing is difficult. Editing is easy.
: Bpe g s -
10.Refresh area [Refresh ared is|Refresh area depends
. : independent of picture|on complexity of]
complexity. © |picture.
__——————________- T
11. Smoothness Produce jagged line. Produce smooth line.
(s =
FExample: CRT, TV, Printer Pen Plotter

111 Color CRT Monitors]

Color CRT monitor displays color pictures using a
combination of phosphors that emits different colored light.

Two basic techniques are available:

i) Beam penetration method

: is met o different layers of phosphor coating used
It displays color depending on
electron beam into the phosphor

s only the outer red layer.
penetrates through the red

ii)

Shadow mask method

The inner side of the viewing surface of a color CRT
consists of closely spaced groups of red, green, and blue
phosphor dots. Each group is called a triad. A thin metal
plate perforated with many small holes is mounted close to
the inner side of the viewing surface. This plate is called
shadow mask. The shadow mask is mounted in such a way
that each hole is correctly aligned with a triad in color CRT.
There are three electron guns one for each dot in triad. The
electron beam from each gun therefore hits only the

_corresponding dot of a triad as the three electron beamms

deflect. A triad is so small that light emanatory from the

individual dots is perceived by the viewer as a mixture of the

three colors.)

Two types of shadow mask method:

a) Delta-delta CRT

b) Precision inline CRT

a) Delta-delta CRT
A triad has a triangular or delta pattern as are three
electron guns. Main drawback of this method is that a
high precision display is very difficult to achieve because
of technical difficulties involves in the alignment to
shadow mask holes and the triad on one to one basis.

giass lace plsss

Figure 1.11: Delta-delta CRT

Introduction and Application | 27

b) Precision inline CRT
A triad has an in-line pattern as are the three electron
guns. The introduction of this type of CRT has eliminated
the main drawback of a delta-delta CRT. Normally, 1000
scan lines can be achieved by this method.

Figure 1.12: Delta-delta and precision inline CRT

But in this method, a slight reduction of image sharpness
at the edges of the tube has been noticed. Normally, 1000
scan lines can be achieved. The necessity of triad has
reduced the resolution of a color CRT. The distance
between the centers of adjacent triads is called a pitch. In
very high resolution tubes, pitch measures 0.21 mm (0.61
mm for home TV tubes). The diameter of each electron
beam is set at 1.75 times the pitch. For example, if a color
CRT is 15.5 inches wide and 11.6 inches high and has a
pitch of 0.01 inches. The beam diameter is therefore 0.01
x1.75 = 0.018 inches. Thus, the resolution per inch is

1 :
about o015 59 lines. Hence, the resolution achievable

for the given CRT is 850 (=15.5x55) by 638 (=11.6x55).
The resolution of a CRT can therefore be increased by
(Sing the pitch. But small pitch CRT is difficult to
e it is difficult to set small triads and
more fragile owing to too many holes
xs more likely to warp from

1.12 Raster Scan Display System/ Architecture/

Technology
CPU |Peripheral Devices|

System Bus

<II s

System Memory| | Video Controller —% Monitor

0000000000

100000000 |
b 0010000000
me Buffer >1,001000000

000100000

Figure 1.13: Raster Scan System

Raster scan system consists of CPU, a video controller
(special-purpose processor), a monitor, system memory, and
peripheral devices.

Advantages:

It has an ability to fill the areas with solid colors or patterns.
The time required for refreshing is independent of the complexity
of the image. It has low ‘cost.

Disadvantages:

For real-time dynamics, not only the end points are required
to move but all the pixels in between the moved end points have to
be scan converted with appropriate algorithms which might slow
down the dynamic process. Due to scan conversion, ‘‘jaggies” or
“stair-casing” are unavoidable. '

Introduction and Application | 29

7'y Memory Controller
y A
! 4 h 4
r System Bus J
1/O devices

Figure 1.15: Architecture of a simple raster graphics system.

frame buffer. The video controller then cycles through the frame
buffer, one scan line at the time (50 fps).It brings a value of each
pixel contained in the buffer.

YVideo controller

A fixed area of the systerri memory is reserved for frame
buffer and video controller is given direct access to the frame-
buffer memory to refresh the screen.

r Raster-scan Generator I_, Hng:g::}a:iloa:go\;:g;cal

CPE} System | Frame Video _M
F Y Memory | Buffer Controller
b A
. 4 JF A d
[Systemn Bus |
1/O devices

Figure 1.14: Architecture of RS with a fixed portion of the system
memory reserved for the FB.

Display Frame | f Video _.IM
Processor Buffer Controller
3
v
CPH Display System
' U Processor Memory
Y
h 4 T y
I 4 System Bus

/O devices

in CPU. When particular
application program,

X X
Register| |Register
‘ Pixel :
—
[Memory Address | Register . Intensity

| Frame Buffer [

Figure 1.16: Basic video-controller refresh operation.

The screen positions are referenced in
Cartesian co-ordinate. Origin is defined as the
lower left screen comner. The screen surface is
then represented as the first quadrant of 2D
system. Two registers are used to store co-
ordinates of screen pixel,

Y

X

Initally, Y-registeris sctto Yomr and X100, pousion "
The value stored in frame buffer for this)
pixel is retrieved and used to set intensity of CRT beam. Then X-
register is incremented by 1 and same process is repeated for each
pixel along scan line as before. After cycling through all pixels
along bottom scan-line (y = 0), video controller resets register to
first position on top scan line and refresh process starts again.
Since the refreshing per pixel is slow process, the video controller
retrieves the intensity values for a group of adjacent pixels from
the frame buffer. This block of pixel intensity is stored in separate
registers and used to control the CRT beam intensity for a group of

Introduction and Application | 31

adjacent pixels on the screen. Video controller can retrieve pixel
_ intensities from different memory areas on different refresh cycles,

Display processing unit (DPU)

Display processing unit (DPU) is also called graphics
controller or display co-processor. The purpose of display
processor is to free the CPU from graphic chores (manipulation).It
has its own memory. The major task is digitizing a picture
definition given in an application program into a set of pixel
intensity values for storage in frame buffer. The digitization
process is called scan conversion.

DPU also performs generating various line style (dashed,

dotted, solid lines), displaying color areas, and performing various
transformation.

113 Random Scan System/Architecture/Technology

| CPU I‘ Peripheral Devices]

System Bus

LT

System Memory || Display Processor Monitor

MTa (10,10)
LineTo (639,479)

IO DEVICES

Figure 1.19: Architecture of a simple random scan system.

Random scan system was developed in 60's and used as
common display dévice until 80's. The system consists of CPU, a
display processor (DPU or graphics controller), a CRT monitor,
system memory, peripheral devices. An application program is
input and stored in the system memory along with a graphics
package. Graphics commands in the application program are
translated by graphics package into a display file stored in the
system memory. The display list or file is then accessed by the
display processor to refresh the screen. The display processor cycle

through each command in the display file program once during
every refresh cycle.

1.14 Flat Panel Displays

Flat panel displays have reduced volume, weight and power
requirements compared to CRT. Current uses of flat panel displays
are like, in TV monitor, calculator, pocket video games, laptop,
and armrest viewing of movies on airlines.

Two types:

i. Emissive displays

ii. Non-emissive displays
1.14.1 Emissive Displays (Emitter)

Emissive displays are devices that convert electrical energy

into light energy.

E.g., plasma panel, LED, thin-film electroluminescent
displays.

Introduction and Application | 33

Plasma Panel

Plasma panel is also known as gas-discharge display. Region
between two glasses plates is filled with mixture of gases
usually neon. A series of vertical conducting ribbons i
placed on one glass plate and horizontal ribbons in another.
Firing voltage is applied the pair of conductor to break down
into glowing plasma of electrons and ions. Picture definition
is stored to refresh buffer and firing voltage is applied to
refresh the pixel position 60 times per second. Separation
between pixels is provided by electric field of conductors,
Thin-Film Electroluminescent Displays

Thin film electroluminescent displays are similar i
construction to a plasma panel filled with phosphor such as
zinc sulfide doped with manganese instead of gas. When
sufficiently high voltage is applied to a pair of crossing
electrodes, the phosphor becomes a conductor in the area of
the intersection of the two electrodes. Electrical energy is
then absorbed by manganese atoms which release the energy
as spot of light to glowing plasma affect in plasma panel.
LED

In LED, a matrix of diodes is arranged to form the pixel
positions in the display and picture definition is stored in a
refresh buffer. Information is read from the refresh buffer
and converted to voltage levels that are applied to the diodes
to produce the light patterns in the display.

1.14.2 Non-Emissive Displays (Non-Emitter)

lmopﬁealeﬁ'ecumconvmamlightorlightﬁ-omsome
other source into graphic pattern.

SOLVED NUMERICAL

Calculate the frame buffer size (in KB) for a raster system

recording a video for 1 min with resolution of 1280 % 1024,

and storing 24 bits per pixel with a refresh rate of 25 Jps.
[2076 Ashwin Back]

Solution:

Screen resolution = 1280 = 1024
Refresh rate = 25 fps
Bit required to represent a pixel = 24 bits
Memory required just for a frame = 1280 x 1024 x 24 bits
Memory required for 1 second = 1280 x 1024 x 24 x 25 bits
Memory required for recording a video for 1 min is

= 1280 x 1024 x 25 x 24 x 60 bits = 5760,0000 KB
If pixels are accessed from the frame buffer with an
average access the 300ns. Then will this rate produce the
flickering effects? (screen resolution = 640x480)

Solution:

Access time for 1 pixel =300ns
Access time for 640x480 pixels = 640 x 480 x 300ns

1 1
Frequency = ="640 x 480 x 300 x 107
= 10.85 frame per second (fps)

This value i; lesser than 50fps, so flicker occurs.

If the total intensity available for a pixel is 256 and the
screen resolution is 640x480. What will be the size of the
frame buffer?

Solution:

Size in frame buffer for 1 pixel = 8 bit
For 640x480 pixels, size in frame buffer = 640 x 480 x8 bits
= 300 KBytes

Introduction and Application | 35

: . lines image with 24-bit true
o f::"‘; 12;5 :'p.m! x:::::-s“mqumd to capture, calculate
T inutes

the total memory required?

Solution:
Memory required for 1 sec = 256x256x3x50 Bytes

For 10 minutes, total memory required

4 (256x256><3x50x 10:(601: 549GB
(lﬂ24x1024x1024)

If we want to resize at 1024x768 image to one that is 640

5
pixels wide with the same aspect ratio, what would be the
height of the resized image? [2070 Ashadh]
Solution:

.- B 768
Aspect ratio =3 =054

Even after the image is resized, the aspect ratio remains

same. So,
THE _ 168
640~ 1024 _
~H=480

6. How much time is spent scanning -across each row of

pixels during screem refresh on a raster system with
resolution 1024x768 and refresh rate 60 frames per

~ Second? [2070 Chaitra]
Solution: :
‘Resolution = 1024x768
Refresh rate = 60fps

For scanning 1 row of pixels i.e., 1024 pixels, it takes

% %1024 = 0.0000217013 second.

7. Consider a raster scan system having 12 inch by 10 inch
screen with a resolution of 100 pixels per inch in each
direction. If the display controller of this system refreshes
the screen at the rate of 50 frames per second, how many
pixels could be accessed per second and what is the access

time per pixel of the system? [2071 Shrawan]
Solution:

Total pixels = 12x100x10x100

Refresh rate= 50 frames per second.

Pixels accessed per second(f) = 12x100x10x100x=50

= 60000000

1
Access time per pixel = = 1.667x 10® second

Introduction and Application | 37

(Chapter — 2

Scan Conversion

21 Output Primitives

The basic geometric structures such as points, sh"aight line
segments, circles, conical sections, quadric surfaces, spline curves
and surfaces, polygon color areas, which are used to describe a
scéne, are called output primitives.

The graphic programming packages describe the scene in
terms of output primitives and to group sets of output primitives
into more complex structures.

22 Line-Drawing Algorithm

The slope-intercept equation of a straight line is:

y=mX tb..cccceeeo. (1)

where "

m = slope of line W /

b = y-intercept

S e poink (X3, 7). 214 Ll bt
and (x3, y2), two endpoint positions

For given.x interval Ax along a line, we can compute the
corresponding y interval Ay from the following equation.

Similarly, we can obtain the x interval Ax corresponding to
specified Ay as

_4y
Ax =T (D)
Casel: For lines with slope magnitudes |m|<l, Ax can be set

proportional to a unit horizontal deflection voltage and
the corresponding vertical deflection is then set
proportional to Ay as calculated from equation 6.

Case II: For lines whose slopes have magnitude |m[>1,Ay can be
set proportional to a unit vertical deflection voltage and
the corresponding horizontal deflection voltage set
proportional to Ax, calculated from equation 7.

Case III: For lines with m=1, Ax=Ay and the horizontal and
vertical deflection voltages are equal.

On raster systems, we must sample a line at discrete
positions and determine the nearest pixel to the line at each
sampled position.

2.2.1 Digital Differential Analyzer Algorithm

Digital differential analyzer (DDA) algorithm is scan
conversion line algorithm based on calculating either Ax or Ay
using the relation.

Ay = mAx......... (i)

_ 4y .
Ax = e (i)

_We sample the line at unit interval in one co-ordinate and
determine corresponding integer values nearest the path for the
other co-ordinate.

Different cases:

Case 1: Line with positive slope and magnitude less than or equal
tol (jm| <1)

A Scan Conversion | 39

Case2: Line with positive slope and magnitude more thay |
(ml>1)

Case3: Line with negative slope and magnitude less than

equalto 1 (jm| <1) _
Cased: Line with negative slope and magnitude more thap |
(jm{>1)
The possible combinations can be shown as follows:

Moving Left to Right Moving Right to Len
Skpe(mi<l | Skpe(m)>1 Slope (m) <1 [Slope (mi> | |

¥

Moy = By, ':l
Yar =¥l

Hawy = Xy - :‘

'h-: - '. 1

Line with a positive slope

Case [If slope (m) <1, then sample at unit x intervals (Ax = 1)
and compute each successive y value because the increment
M X 15 more than increment in y.

to 1, the calculated y values must be rounded to the nearest
integer.

Case II: If m > 1, then the increment in x (Ax) is smaller than
increment in y (Ay),
So, set Ay = 1.
Then,

=’l . m<l

m
That s, —

Fig. 2.2: Line with positive
slope |m|<1 and |m|>1

m>1

1
Ay = X+ m S)

Yia = yk+ 1..(6)

Here, in the both case m<1 and m>1, consider the algorithm

(i.e., equations 3, 4, 5, 6) based on the assumption that lines

are to be processed from the left end point to the right end

point, .

If this process is reversed (that is, lines are to be processed

from right to left), relation required to change in both case.
Case I: If m<1, Ax=-1,s0, Ay=-m

i.e., X+ = xk—l

Yt = ¥Yg—m
Casell: If m> 1, Ay=-1 andAx=—#
: 1
LE, Xkt S Xk eeveenersnsnnnes (7N
Yiert = Y| szl B
Line with negative slope
Case I: If |m|<1, then assume start end point is the left.
Ax =1 and Ay = m (m is negative) |mf>1
That is, \
Kir] Xt Lo (9}
Yierl = Yt M.eeeeniend (10) ——— |mi<I

If algorithm is required to

3 Fig 2.3: line with negative
proceed right to left, then set on slope nl<1 and |mi>1

Scan Conversion | 41

Ax =—1 and Ay =—m
u(i)

i.e., :ﬁﬂ xk—-
Virl = Vi Thcisneneee .{12)

Case II: If Imi> l’ then assume start cﬂd is at Ieﬁ 3]](] set Ay =i

1
and Ax =-71
; 1 a3
P, Xyu) = Kk sremessmasenes
Vit = Ve Lo (14)

If the algorithm is required to proceed right to left, then se(

Ay = land Ax =—

1
Le. xm xrl*; (15)
Y1 = BN (16)

Step 2: beclm X1, 3.(1, X3, ¥, dx, step as integer variable and x, y,
Xin» Yinc 3s floating point.

Enter value of x;, y1, X2, Y.

Calculate dx = x; — x;.

fasalatedy =y, -y

Step9: X=X+ X
=¥ T Yine
Set pixels (Round (x), Round (y))
Step 10: Repeat step 9 until x = x,
Step 11: End Algorithm

Advantages:

. It is faster method than direct line drawing equation y =
mx+c for calculating pixel position as it eliminates
multiplication.

. It avoids multiplication operation. It is simple to understand,
and it doesn’t require special knowledge to implement.

Disadvantages:

. The floating point addition is still needed in determining
each successive point which is time consuming. The value of
slope 'm'is usually stored in floating point number. So, there
could be round off error.

. The line will move away from the true line path, cspec:ally
when it is long due to successive round of error.

. Accumulation of round off error in successive additions of
floating point increment,

Code in C to draw a line using DDA Algorithm

#include<stdio.h>

#include<conio.h>

#include<graphics.h>

#include<math.h>

void main()

{ _
int gd&=DETECT,gm;
int x1,y1,x2,y2 stepsize,dx,dy,i;
float x,y, xinc,yinc;
initgraph(&gd,&gm,"c: \\tc\\bgl")
printf{"Digital Differntial Line Drawing Algorithm\n");

Scan Conversion | 43

T A T iR WP

vnllﬁ of x1 and yl\n");

&xl &yl); #tinclude<dos.h>
% thc values of x2 and y2\n"); #include<math.h>
7 T:.; manf("%d %d" ’&"2} &y2); : void dda (int, int, int, int);
- - void main()
{

int gd = DETECT, gm;
: : . initgraph (&gd, &gm, "c:\tc\\bgi");

:f (M@FM&)) dda (100,100,200,100);
dda (200,100,200,200);
smpsimd}')i dda (200,200,100,200);
} dda (100,200,100,100);
M A dda (100,100,200,200);
{5 h - | dda (100,200,200,100);
stepsize=abs(dx); " dda (100,125,200,125);
} dda (100,150,200,150);
xinc=dx/(float)stepsize; . : dda (100,175,200,175);
mﬂﬁ(ﬂm)swpm . dda (175,100,175,200);
' g dda (175,100,150,200);

dda (125,100,125,200);

dda (100,150,150,100);

dda (150,100,200,150);

dda (200,150,150,200);
 dda (150,200,100,150);

getch();

closegraph();

)

void dda (int x1, int y1, int x2, int y2)
{

int i, stepsize, dx, dy;

float x, y, Xinc, yinc;

dx = x2-x1;

Scan Conversion | 45

dy =y2-yL;
x=xl;
if (abs(dy) > abs(dx))
{
stepsize = abs(dy);
}
else
{
stepsize = abs(dx);
} LA
xinc = dx/ (float) stepsize;
yinc=dy/ (float) stepsize;
putpixel (x, y, RED);
for (i=0; i < stepsize; i++)
{
X =X + xinc;
y=y+yinc;
putpixel ((int) (x+0.5), (int) (y+0.5), RED);
delay (10);
}
}]
2.2.2 Bresenham's Line Algorithm
: Bresenham’s line algorithm is an accurate and efficient linc

drawing algorithm. It uses only integer arithmetic to find the nex!
osition to be mmental error. The rnsuor

and which functio?

For positive slope and slope | m| <1

it2 -
witl o ™ .
d; {
Y d,
Vi]]
X xt+1 X2

Figure 2.4: Line with m<1

Pixel positions are determined by sampling at unit x
intervals.

Starting from left end position (Xo, yo) of a given line, we
step to each successive column (x-position) and plot the
pixel whose scan line y value is closed to the line path.

Assuming the pixel at (x, yi) to be displayed is determined,
we next to decide which pixel to plot in column x.,, our
choices are the pixels at positions.

(x+ 1, y) and (X + 1,y + 1)

At sampling position x, + 1, we label vertical pixel
separations from the mathematical line path d, and d,

The y-co-ordinate on the mathematical at pixel column
position x; + 1 is calculation.

As,

y=m(x+1)+b.....(1)

Then,

di=y—¥

di=m@x+1)+b-¥... (2)

And,

b=t 1)-y

d=y+1-mx+l)-b....(3)

Scan Conversion | 47

Case I:

Now,
d-do=m(x+ 1) +b-y-yi- 1 +m(xu+1)+b
=2m(x,+ 1) — 2y +2b -1

=2 e+ 1) - 23+ 26— 1

Defining decision parameter py = Ax (d;— d)

px = Ax(d,— d3) = 2Ay(x, + 1) — 2Axy, + 2Axb — Ax
=2Ayx, + 2Ay — 2Axy + Ax (2b-1)
= 2Ayx,— 2Axy + 2Ay + Ax (2b - 1)
= 2AyX— 2AXYi + Covrvrieennn(4)

Where, ¢ = 2Ay + Ax (2b—1)

Here, sign of py is same as the sign of d,—d, since Ax=>0.

If pi > 0, then d; < d,, which implies that y, + 1 is nearer than
- Yk So, pixel at (y, + 1) is better to choose which reduce error

than pixel at y, This determines next puel co-ordinate to
plotis (x + 1, i + 1).

Case II:

If pi < 0 then d, < d, which implies pixel at y; is nearer than
pixel at (yx + 1).So, pixel at y; is better to choose which
reduce error than pixel at (y; + 1).This determines next pixel
co-ordinate to plot is (x; + 1, y3)

Now, similarly, pixel as (x + 2) can be determined whether
itis (xx + 2, yi + 1) or (xc + 2, i +2) by looking the sign of
deciding parameter p+1 assuming pixel as (X, +1) is known.

Pes 1 = 28y — 2%,y +cwl;erec,1ssameasmpk

This implies that decision parameter for the current column

can be determined if the decision parameter of the last
column is known,

Here, (yx1— y«) could either 0 or 1 which depends on sign of
P

Ifpe2 0 (i.e.,d, < dy), yeo 1= ye+ 1 which implies (ye + 1 -

V) =
That is, at >0, the pixel to plot is (x, + 1, yx + 1) and
Pis 1 = Pt 24y - 2Ax

If py <0 (ie..d) < dy), yxn

= yx which implies (i 1~y = 0)

i.e., at p<0, then pixel to be plotted is (x,+1, i)
and pyn = pet2Ay
Initial decision parameter (po)
Px = 2Ayx,—2Axy, + 2Ay + Ax(2b— 1)
Po = 2Ayxy— 2Axy, + 2Ay + Ax(2Zb - 1)

A

But b= yy— mxo = Yn—zxzxo

=2Ayxqo— 2Axyu+ 2Ay + 2Axy,— 2Ayxo— AX
=2Ay —

BLA Algorithm

Step 1.
Step 2.
Step 3.
Step 4.

Step 5.

Step 6.

Start

Declare variables x,, y1, X2, ¥2, Lo ly» AX, AY, Po, P Pic
Read values of x;, ¥, X2, Y2

Calculate Ax = ‘
Ay = absolute (y2— ¥1)
If (x2> x1)

assignl, =1

absolute (X2— %)

else

assign 1,=-1
if (y2>y1)
assignl, =1
else

assign 1, = -1

Scan Conversion | 49

——

Jry
BT T A e
e BREEL "N el

Step 7. Plot (x1, y:)_ <) ° In DDA, since the calculated point value is in floating point
Step 8. if Ax > Ay(i.c. number, it should be rounded at the end of calculation. But
compute Po = 24y - Ax in BLA, round off is not necessary. So, there is no
ino at k= 0 to AX times, repeat accumulation of rounding error.
if (0. <0) . Due to rounding error, the line drawn by DDA algorithm is
if (P ; S
=%+ not accurate, while by BLA algorithm, line is accurate.
Xg+l L
=y, . DDA algorithm cannot be used in other application except
b g = : line drawing, but BLA can be implemented in other
P =Pt 28Y application such as circle, ellipse, and other curves. ’
elseﬂ +1 Comparison between DDA and BLA
it Base of Digital differential Bresenham's line
Yor =Yt comparison | analyzer line drawing | drawing algorithm
Pen =Pt 24y - 2Ax algorithm
Plot(xis1, Yier) Arithmetic (DDA algorithm uses|BLA uses integer
else

floating points

calculate p = 2Ax — Ay

: point is computed in

€ time and more memory

point is calculated in
' and less memory

" |accumulation occurs on it

Operations DDA algorithm uses|BLA uses only
starting at k= 0 to Ay times, repeat multiplication and|subtraction and
if{p, < 0) - division in its operations additic.m in its

Ry : operation]
Yerr =Y+ Speed DDA algorithm is slower|BLA is faster than
B+ 26k than BLA because it uses|DDA because it uses

floating points subtraction, addition
else and integer only
et =X+ Accuracy and|DDA algorithm is not as|BLA is more efficient
e =yt accurate and efficient asland much accurate
Pent =it 2Ax - Ay BLA as error and error|than DDA algorithm

DDA algorithm can't
draw curves and circles
as accurate as by BLA

BLA can draw curves
and circles much more
accurately

DDA algorithm round off]
the co-ordinates to
integer that is nearest to
the line

BLA does not round
off but takes the
incremental value in its

operation

Scan Conversion | 51

pEm—
. ————”/—:‘l’- Bresenham's line |
'—ﬁ Wduﬁe;::wing drawing algorithn,
algorithm ST
e ; ive as it|BLA is cheaper thy
Expensive E;Aﬂm ot DDA as it uses onll;
addition and
\—”” Sllbtt&CtiOI'l
Code in C to draw a line using BLA
#include<stdio.n>
#include<graphics.h>
#include<conio.h>
#include<math.h>
void main()
{
int gd = DETECT, gm, x1, y1, %2, ¥2, I, ly, dy, dx, pk, i;
initgraph (&gd, &gm, "c:\\tc\\bgi");
printf ("put the values of x1 and y1\n");
scanf ("%d %d",&x1, &y1);
printf ("put the values of x2 and y2\n");
 scanf ("%d %d" &2, &y2);
&g dx=abs(xz-x1);' A
if (k2>

else

{
ly=-1;
}

putpixel (x1,y1,RED);

else

}

else

if (dx > dy)

{

pk=2*dy-dx;
for(i=0; i<dx; i++)
f .

if (pk < 0)

{

xl=xl+Ix;
yl=yl;

pk = pk + 2*dy;

}

{

x=xl+Ix;

yl=yl +1ly;

pk = pk + 2*dy - 2*dx;
} .

putpixel (x1, y1, RED);

}

{

pk=2*dx-dy;
for(i=0; i<dy;i++)

{

Scan Conversion | 53

ifipk<0)

{

xl=xl;
yl=ylHy:
p=pk+2*dx;

xl=xl +1x;

yl=yl +1ly;

pk = pk + 2*dx-2*dy;
\ :
putpixel (x1,y1,RED);
} :

}

getch(); -
closegraph

}

Circle

- The equation of circle in Cartesian form is
- ﬁ"é’z’"'(?-h)"—'tz

!?‘g,t{?-(x,.,ji

23.1

We sample at unit intervals and determine the closest pixel
position to the specified circle at each steps.

Non uniform spacing of plotted pixel is a problem.

Interchange the rate to x and y wherever the absolute value
of slope of the circle tangent greater than|.

To solve the computational complexity, we use symmetry of
circle i.e., calculate for one octant and use symmetry for
others.

Bresenham's line algorithm for raster displays is adapted for
circle generation by setting up decision parameters for
finding the closest pixel to the circumference at each
sampling step.

We test the halfway position between two pixels to
determine if this midpoint is inside or outside the circle
boundary.

Midpoint Circle Algorithm (Derivation)
The equation of circle is x* + y* =

With center (0, 0) and radius r, let’s define a circle function
as circle (x, y) =x* + y*— .

The distance of pixel to adjacent pixel is unit.

pixell(xi+1,y)

Vi — e e

m N—-—""’_—-

ixel2(x,+1,y,-1)

Yirl .

Y2

Xk Xyt 1 xk+2

Figure 2.6: Mid-paint circle pixels

Scan Conversion | 55

__
pixcl 1 and pixel 215 04~ Yoet) = 1

In figure, length Wl"“‘

and half the length =7 -
e e H [gboundﬂ'y
<0=>if(x.}'}"‘”s'd=mcwé
yJismthgcifclﬁbOM

Circle (x,y) {=0=if(% :
5 0= if(x,¥)is outside thecircle boundary

oo sy i pltid,then nextpoit cose 10 the cirle
L <

is (Xie1 i) OF i+, 1)
. Decisilon parameter is the circle function evaluated at the

)
P = fese (+1, Y677)

1
pk=m+1)’+(y,-5)’—r2 2)
So, if py<0, then midpoint is inside the circle and yy is closer
1o circle boundary. Else, midpoint is outside the circle. And
yi—1 is closer to the circle boundary

Successive decision parameters are obtained using
incremental calculations i.e., next decision parameter is

obtained at
1
Xt =X+ 1+1 andym—i y

o= e (e 1 Yot —3) .
; M==-_{,}_-g-1l+1)3+(yh,—-2l-)z—r’ il 3)
 Subtracting equation (2) from (3)
Gy : gﬁﬁ?fxx.*_;l)z"(yi'%)2+rz
1

Where ;. 1s either y, or y, - | depending on sign of px
If px < 0, then next pixel is at (x+ 1, yi)
Pt =Pet Xy + 1
If px = 0, then next pixel is at (x,+ 1, yx— 1)
Piot =P+ 2% + [(= 1)’ = %] = (= 1) + 1
=pet e+ (00— 2t 1-yd) + 1+ 1
=px + 2% -2yt 1+ 1+1
=pt 2% — 20— 1) + 1
=pet 2%~ 2Yien * 1
Initial decision parameter
The initial decision parameter is obtained by evaluating the
circle function at starting peint (xo, o) = (0,r).

po= a1, 1-3)
= Iz+(1'-%)2—r2

1 1
-—-lﬂ'z—:!r><2-i-4——r2

5
Po=y T
If the radius r is specified as an integer, we can simply round
topp=1-r
Mid-point circle algorithm
Step 1. Start
Step 2. Declare variables X., Ye.I,X0,Y0,P0; Pk> Pk+1-
Step3. Read values of x, y, I.

Step4. [Initialize the xo and o i.e., set the co-ordinates for the
first point on the circumference of the circle centered at

origin as
x=0
Yo=T
Step 5. Calculate initial value of decision parameter

Scan Conversion | 57

e
5
p=3"F
Step 6. At each X position, starting fromk=0
Ifp<0
Xpsl = xk+1
Y T Yk
Pl = Pt 2xp]
else
X1 = Xt
Y = il
Prt = Pt 2Xes 1 —2Yie Tl
Step7. Determine the symmetry in other seven octants.
Step8. Move each calculated pixel position (x, y) onto the
circular path centered on (X, ¥o)
Step 9. Plot the co-ordinates values
X=x+Xx,
Y=y+¥e
Step 10. Repeat steps 6 to 9 until x 2 y..
Step 11. Stop
24 Elli
An ellipse is defined as the set of points such that the sum of
the from two fixed point/positions (foci) is same for all

jo axis: The straight line segment extending from one
10 the other through foci.

' ion of the ellipse, bisecting
ellipse center) between the

] o
P(x, y)
dz
d;
i,) F2(x,, y1)
X
Figure 2.7: Ellipse
2
General ﬂqmﬁ!’“‘%ﬁ-&_iw_ -
£ T,
e ¥
In polal' form!
241 Mid-Point Ellipse Algorithm
y
i (x,¥)
: R,
Ty
Ry
X
Tx
(%,-y) S h

Figure 2.8: Ellipse with symmetry points

pixell (x,+1,y,)
B I 2
r iyt =0
Yk T—— j A
x‘_fr

Vel m pixel2(x+1,y,-1)

-

X X +1 X +2

Figure 2.9: Mid-point in region 1

Scan Conversion | 59

Applied throughout the 1* quadrant in two parts

. i di.vision of 1% quadrant according i, e

slope of an ellipse with 1<Ty . . .

process this quadrant by takmg unit steps in x-direumn

where slope of curve in y-magnitude less than 1, ang taking

unit step in y-direction where slope ha§ mégniYUde rcate

than 1. Region 1 and 2 can be processed in different ways.

i at position (0, 1) and step clock wise alon

i) :ﬁ:ﬁ calpp‘;th in ﬁm: quadrants, shifting from unit sipt]?2
x to unit step in y when slope becomes greater than -

ii) Alternatively, start at_pt_lsition (ry, 0) and select poings j,

counter clockwise, shifting from unit step in y to unit Step

in x when the slope becomes less than-1.

Here, we start at position (0, r,)

-we define an ellipse function with (x., yc) = (0,0)

fape (6 Y) =R X+ Y -0 ()

With properties
< 0,if (x,y) is inside the ellipse boundary

ftipse (X,¥) ={ =0, if(x,y)is on the ellipse boundary
> 0,if (x, y)is outside the ellipse boundary

Thus ellipse function serves as the decision parameter.

e at each_ sampling position, we select the next pixel along
the elhpsc path according to the sign of the ellipse
function evaluated at the midpoint between the two
candidate pixels.

* at cach step, we test the value of the slope of the curve,

- * Sslope can be caleulated as: r,’x* + r,’y* = r,’r,}

Differentiating with respect to x,

2, slope = -1

20

dy L =—2r!E X
dx 1 2y

or, erx =2y

We move out of region 1, whenever
2r% > 2’y

We move out from region 2, whenever
2r,7x <2’y

Assuming (X, ¥ has been illuminated (selected) we
determine the next position along the ellipse path by evaluating the

. = 1
decision parameter at the midpoint (x+ 1, yx—3)-
We have to determine the next point is (xx+ 1, yi) or (% + 1,
i—1)

We define decision parameter at mid-point as

1
ik = fetipse (%t 1, Y= 3)

12
pu=r, (1) rf(yk —5) 0 RS (1
If py<0, the mid-point is inside the ellipse and the pixel on
scan line yy is closer to the ellipse boundary

Otherwise, the mid-point is outside or on the boundary and
we select the pixel on scan line yi—1

At the next sampling position (Xyn+1 = x+2), the decision
parameter for region 1 is evaluated as

1
Puent™ fettipse (i1 + 1, Yir1—5)

Picn= l'yZ[(xk + D)+ 1P+ 5 + ‘;’ ¥= l',tzr,.z (iv)

Subtracting equation (iii) from (iv),
s + 1+ - (utl)]

1)
1y 1
+rx{(yk+ 1—5) - (yk—i)z]—rfryl 8 e

Piksi— P =

Scan Conversion | 61

?—‘[{xn 1! + 20+ 1{+ll T

I =t
| 1
2ym><'l+4 -+ 2005 4]
L 2r1(xx+l}“¥ +12+ 562 [P = YD) — Gienr— Y]
-2 m+|)+r,+r, At = ¥ = Gkt = W)
Where Y is either ¥i or yi—1, depending on the sign of

If pu< €., Yirt = Yo then decision parameter is

Pt = Pt 2":3("1 +1)+ rrz

Ifpyc0 i.e..Yin = Yio 1, then decision parameter is

P = Puct (et 1)+ 1,- 26y

The initial decision parameter is evaluated at start positiop
(%,¥0) = (0, 13) 23

1
Pu= fcmpse(l’ Iy _E)

=r,.2+rx[)z—r, Ty

Pi= r, - r) I+ 4 bt £_.......(v)

Region 2 :
We sample at unit steps in the negative y direction and the

midpoint is now taken between horizontal pixels at each step. The

decision parameter is'
1
Pa= fm—(ﬁz,w 1]

1) won-1yy

Vi 1 + +

" (s
L —

Xk X+l
Figure 2.10: Midpoint in region 2
If pu > 0, the midpoint is outside the ellipse boundary and

we select the pixel Xy. If p;<0, the midpoint is inside or on the
ellipse boundary and we select pixel position xHl.

Now, at next sampling position yi.—1 = yx—2

y 1
Pok+t = fell'PS'{xka R —IJ

2
1 2.2 -
pnﬂ.:ryz(xhﬁg) + 1 (Ve =1 11, (Vi)

Subtracting equation (vi) from (vi)

R s e NV
=Px "‘T:zkh =1F =20y, -1)+1-(, “l)z]ﬂyz[[lm *%]2 ”[xk +%)2]

2 2
=P +1 [20y ~ 1)+ 1]+ fyz[[xm‘*—;] '(Kk +%]] :

If poy > 0, then

Xih) = Xy

Paist =Paic =20 Yir1 +Ix

If p2y<0, then

Xee) =X+ 1

Pawe1 = Paic + 26, Xt = 26 Yy + 1,2

Scan Conversion | 63

the next point along the ellipse centered on (0,0) is (xi,

. 1 I],_ X.. ,) Pﬁ- p'h Pk 1 Y and “ 2
Step 3- Read Values of Xes Yor To Ty, P2ks1 = P2k Zl_x_}'i—: +r
- Clse

the first point on an ellipse centered on origjp (x.

Step 4. Sb;’:'m tializing the X and yas the next point along the ellipse is
x=0 X1 = Xt 1
y=1 Yt =Y 1
: 2
Pakst =P t+ Zr},th, =25, Yiu +1',(2

ate the initial value of the decision parameter j,

Step 5.
region 1 as Use the same incremental calculations for x and y as in
1 2 region 1.
2 2
=1, L L+7k : ;
arlt T Step9. Determine the symmetry points in the other three
Step 6. For each x, position in region 1, starting at k = 0, perform quadrants.
the following test. Step 10. Move each calculated pixel position(x, y) onto the
If pu<0, elliptical path centered on (x., y.) and plot the coordinate
Xeor = Xt - values.
Yier1 = Y KSR
P+l =P +2‘yz"t+l "‘ryz =YY . N
e 5 Step 11. Repeat the steps for region 2 until y<0.
Step 12. Stop.
Kot = Xyt1
=yl - 2.5 Filled Area Primitive
A standard output primitive in general ‘graphics is solid color or
o f g 2

Picst =Pic + 26, Xy — 207y, +1, patterned polygon area. Other kinds of area primitives are
and continue until 21',21: > zrxly sometimes available, but polygons are easier to process since they

] have linear boundaries. The main idea behind the 2D or 3D object

Step 7. mmmﬂ@monm i usin
e PR : (3&1’!; R “; region 2 g filling procedure is that it provides us more realism on the object of
B l:_ﬂc.__ ula u_d- fcgion 1 as interest. There are two basic approaches to area filling in raster
- systems.
® One way to fill an area is to determine the overlap intervals
for scan lines that crosses the area.
. Another method for area filling is to start from a given
interior position and point outward from this until a specified
boundary is met.

Scan Conversion | 65

281 SCAN-LINE Polygon Fill Algorithm:

A P P

In scan-line polygon fill algorithm, for each scyy. it
crossing a polygon, it locates the intersection points of the scap line
with the polygon edges. These intersection points are then Sorteq
from left to right, and the corresponding frame-buffer positiop,
between each intersection pair are set to the specified color. In thj
method, the scan line must be even. At two edge connecting poiy
called the vertex, we count the scan line two to handling the
problem for scan line passing through vertex, but this consideration
also may creates problem for some instant as shown in figure. Ty
handle such problem shown by count-5, we keep the vertex blank
and hence the count become 1, so that overall count in that scan
line become even as shown in figure x

In Boundary filling algorithm starts at a point called seed
ndiluh a region and paint the interior outward the boundary. If
the boundary is specified in a single color, the fill algorithm
proceeds outward pixel by until the boundary color is reached.
~ Starting from (x, y), the procedure tests neighboring positions 10
 determine whether they are of boundary color. If not, they are
**mﬂ’h‘. and their mﬂlbms are tested. This

8- Connected

Algorithm for Boundary fill 4- connected:

void Boundary_filld(int x,int y,int.b_color, int fill_color)
{ .
int value=getpixel (x,y);
if (value ! = b_color && value != fill_color)
{
putpixel (x,y.fill_color);
Boundary_fill4(x-1,y, b_color, fill_color);
Boundary_fill4(x+1,y, b_color, fill_color);
Boundary_fill4(x,y-1, b_color, fill_color);
Boundary_fill4(x,y+1, b_color, fill_color);
}
H
Algorithm for Boundary fill 8- connected:
void Boundary-fill8(int x,int y,int b_color, int fill_color) '
{
int current =getpixel(x,y);
if (current !=b_color && current != fill_color)
{
putpixel (x,y.fill color); Boundary_fill8(x-1,y,b_color,fill_color);
Boundary_fill8(x+1,y,b_color,fill_color);
Boundary_fill8(x,y-1,b_color.fill_color);
Boundary_fill8(x,y+1,b_color,fill_color);

Scan Conversion | 67

Boundary_fill8(x-1,y-1 ,b_color,ﬁllrcolor};

Boundary_fill8(x-1,y* 1 ,b_color,ﬁl]_color);
Boundary fill3(x+1,y-1 Jb_color,fill_color);
Boundary_fill8(x+1,y+1,b_color.fill_color);

1
i) _

Recursive boundary-fill algorithm not fills regions correctly
R if some interior pixels are already displayed in the fill color.
l " Encountering a pixel with the fill color can cause a recursive

branch to terminate, leaving other interior pixel unfilled. To avoid
this we can first change the color of any interior pixels that are
initially set to the fill color before applying the boundary fill
procedure.

[E:1 4 2.5.3 Flood-fill Algorithm:

‘ - Flood _fill Algorithm is applicable when we want to fill an

i area that is not defined within a single color boundary. If fill area is

L vl bounded with different color, we can paint that area by replacing a

it specified interior color instead of searching of boundary color

_ value. This approach is called flood fill algorithm. We start from a

specified interior pixel (x,y) and reassign all pixel values that are

currently set to a given interior color with desired fill_color. Using

: either 4-connected or 8-connected region recursively starting from
J input position, The algorithm fills the area by desired color,
§

Algorithm:
vqid flood_fill4(int x,int y,int fill_color,int old_color)

54

L

ixel (x,y); if (current == old_color)

old_color); flood fill4(x,y-1,
filld(x,y+1, - fill_color,
_coler, old_color);

SOLVED NUMERICAL AND DERIVATIONS

L Consider a line from (3,7) to (8,3). Using simple DDA
algorithm, rasterize this line.
Solution:
Here,
Starting point (X, y1) = (3,7)
Ending point (xz, y2) = (8,3)

Slope (m) = 2!
_3=7
~8-3
=-0.28
Since |m|<1, from DDA Algorithm we get,
X = X+ 1
Yir1 = Yt M
k Xk Yk Xplot Ypior | (Xuers Yier)
1 3 7 3 7 (3.7
2 4 6.2 4 6 (4.6)
3 5 5.4 5 5 (5,5)
4 6 4.6 6 5 (6,5)
5 T 38 7 4 (7.4)
: 6 8 3 8 3 (8,3)

2 Use Bresenham’s algorithm to scan convert a straight line
connecting the end points (20, 10) and (30, 18).

Solution:

(x{], yﬂ) = (20, 10)
Ax =lx2—x1|= 10

Ay=ly;-yil=8
po=2Ay — Ax (since Ax > Ay i.e., m< 1)
=6

Scan Conversion | 69

ADA :]
;or{ 0 ¥ [k P (Xis15 Yicr1) 2x44 2yin
Pe=Ys —
Xy =il 0 -9 (1, 10) 2 20
Vi1 = Y 1 —6 (2, 10) 4 20
e =pt 28y 2 = (3, 10) 6 20
if p> 0,
X =X+ 1 3 6 . 4.9 8 18
Yer =Yt 1 4 -3 5,9) 10 18
Pt = it 28y~ 2o - 5 8 6, 8) 12 16
[k Px (Xit1s Yicet) = =
0 6 (21, 11) s @.n 14 B
1 (22, 12) _ 4. Using midpoint circle algorithm, calculate the co-ordinate
= on the first quadrant of a circle having radius 6 and centre
2 2 &1 at (20, 10).
3 14 (24, 13) : pem—
4 10 (25, 14) r==6
5 (26, 15) . (% ¥2)=(20,10)
6 2 (27, 16) po=1-r=1-6=-5
7 i) (28, 16) (X0, ¥o) = (0,6)
If p<0
8 14 (29, 17) B
° 10 (Xke1s Yier1) = (Xee, Vi)
; - 15) P+l = Pt 2%+
3. Determine the raster location along the circle octant in the Else
@-mmammmmm ‘ (Xier1, Yie1) = (xi+ 1, yie1)
Soluglans - . _ Prtt = Pt 2Xi1—2¥ie+1
. For first octant, .
k Pk Xprr, Vi1 | 2Xier 2Y¥in Pixel to plot
Xps1HXes ¥iern T¥i
| .| (0,6) 0 12 (20,16)
0 -5 (1,6) 2 12 (21,16)
-2 (2,6) 4 12 (22,16)
2 0 (3,5) 6 10 (23, 15)
Scan Conversion | 71

— ’ Pixel to plot

Tk T o [mesen] 2t | 2
| k P y Xpr1HXes Y1 TYy

:] —-l:-s)—“ 3 10 (24, 15)
| 3 = | Y]
T2 | 9 | 6a | 10 o ol e
‘ necessary to plot |

pixels

For second octant, using symmetry (x,y)—=(y.x)

(0,6)=(6,0). (1,6) =(6,1),(2,6) —(6,2),(3,5) —(5,3) and
(4.5 = (5.4).

At last we need to shift the co-ordinates in the center (20,
10) so,

(6, 0) — (26, 10), (6, 1)—(26, 11), (6, 2)—(26, 12), (5, 3) —
(25, 13) and (5, 4)—(25, 14)

5. Derive the Bresenham's decision parameter to draw a line
moving from left to right and having negative slope. State
the condition to identify you are in the second region of the
ellipse using midpoint algorithm. [2072 Kartik]

Solution:

i) Forline with negative slope and | m|>1

Q{ f: T

X LI 8|

by sampling at unity
ﬁomleﬁend positi;ryn (Xq, ¥o) of a given line, we
successive row (y position) and pl i
'nehnwmthelinepath). p. e
ix; & (X yi) t0 be displa i
; - - yed -
to decide which pixel to plot in

P ———

* The candidate pixels are at position (x, yi—1) and (x.+1,
yi—1) .
* At sampling position y,~1,we label horizontal pixel
separation from the mathematical line path d, and d,.
. The‘ ?(-coordinate on the mathematical line at pixel row
position yx—1 is calculated as
yk_l =mx+b
Ye—1-b
.m

where m= By
Ax

or,x =

since m is negative.

Then,
RS vy ST (ii)
dy=xp +1-x.cnnnn. (iii)

And,
d—dy;=x-x, —x, —14+x
=2x-2x, -1

S4B
=2[——Y" }-2xk 3
m

Ax Yy —1-
sy %10 2%y —1
Ay 2

(d; —d,)Ay =-2Ax(y, —1-b) - (2x, +1)Ay

Now, defining decision parameter p, = Ay(d, —d,)

Pi = Ay(d; —d;) =-2Ax(y, —1-b)—(2x, +1)Ay
= —2Axy; +2Ax +2Axb-2Ayx, - Ay
=—2Axy, —2Ayx, +2Ax+2Axb— Ay

Where C = 2Ax +2Axb- Ay (All are constant)

Here, the sign of p, is same as the sign of 4, -d,, as
Ay >0

Scan Conversion | 73

Case I:
If p> 0, then d,>d; which implies that x,+1 is nearer than

X, so the next pixel to choose is (x,+1, yi—1)

Case II:
If pi< 0, then d;<d, which implies that x; is nearer than
xi 1, so the next pixel to select is (xi, y,—1)

Now,
Similarly, pixel at (y,—2) can be determmed whether it is
(xit1, ¥—2) or (x+2, yvi—~2) by looking the sign of
deciding parameter py.; assuming pixel at (y,—1) is
known.
Pi-1 = —2AxYg— 2Ayx +C
where C is same as in py.
Now,
Pis1— Px = —24AxY, i +C+2Axy, +2Ayx, —C
==2AX(Yio1 — Yi) — 28Y (Xpeyq — X))
=—2Ax(yy —1-yi) —2Ay(xy,y —Xy)
=2Ax - 2Ay(Xy .y — Xy)
This implies that decision parameter for the current row
can be determined if the decision parameter of the last
row is known.
Here (xy+1—x,) could either 0 or 1 which depends on sign
of py. 2
p=0 (i.e, di>dy), xp=x+1
Then, pu; = Py + 2Ax - 24y
If <0, then x,.., = x,
Prt = Pe + 2Ax
P~ ~2Axy, — 28yx, + 28xb ~ 20x - Ay

iii)

= T20xyo — 28yx, + 24x (vo + :—‘x’lxu) +24Ax — Ay

[..'}’:mx+b,b =y—-mxm = ,_'5_3"]
Ax

Il

-28xy, — 2Ayx, + ax(ﬁ’{;—“!ﬂ) +2Ax — Ay
= ~24xy, — 2Ayx, + 28xyg + 28yxy + 20x — Ay

= 2Ax — Ay
For line with negative slope having magnitude less than 1.
Yi d, ® {m}'C.l

Y
dz \
Yi-l T !

Xk X+ X, +2

di=y-y

b=y-(W1)=y-wn+l

di—d= Y-y -y +y—- 1= 2y-2y-1
Again, y = m(x,+1)+b

di—dr= 2y, 2(m(x+1)+b] - 1

_ Ay .. . :
m—-m(-"m is negative)

di—dy= 2y,-2(— i—f) (x+1)—2b—1

_ 2yk +Ax+20yxk+2Ay—Ax(2b)-Ax
Ax

Pe= (di—dy) Ax = 2Axyy + 2Ayx + 2Ay - Ax(2b) - Ax
P = 2Axy; + 2Ayx, + ¢

where ¢ = 2Ay-Ax(2b)-Ax

For next decision parameter,)

Pt = 2AXYie) T 28Xt €

Now,

Pr+1-Pk = 2AX(Yice1-Yk) + 28y(Xir1-Xx)

Scan Conversion | 75

if pk < 0, d1<d2
50,

(X1, Yieer) = (a1, Y0

S, P = Pxt 28Y

ifpk>0,d1 > d2

50, (Xeet, Yir) = (i1, Y1)

50, Px+1 = Pt 28Y - 2Ax

Now, for initial decision parameter,

Px = Po, Xk =Xo, Yk=Yo

po=28xy, + 28y%o + 28y — 8x(2 (0 - (-2)x)+ D

; 20%y0+28yx04ax
= 2Axy, + 28yx, + 24y — ﬁx(0+::r 0)

2Axy, + 28yx + 28y — 2Axyy — 28yxg — Ax
= 2Ay — Ax

6. Determine the pixel positions of following curve in first
quadrant using mid-point algorithm.

L b
“+ 36-1 _ [2076Asfmfm Back/

Solution:
Here, r,” = 64, 1,” = 36
" Here, Half of major axis (r,) = 8
Half off minor axis (r,) = 6
First point of the ellipse starting with (0, r,) is
X =0)
Yo=1y
S0, x0=0, yo=6
Now, 1,
~ Initial decision parameter in region 1 is
- e s bry

Now, for each x, position in region 1, starting at k = 0, we
perform the following test

IfPy <0,

Xt = Xt 1

Yir1 = Yie

Picr 1= Pt 20, %5 + 1,7
Else

Xy = Xi T+

Yir1 = Yi— 1

P =Put zryzxw =250y + l'yz
and will continue until 2r,’x > 2r,%y

Similarly, we calculate the initial decision parameter in
region 2 using the last point (o, yo) calculated in region 1 as

Pp= ryz (xo * %]2 + rxz (Yﬂ_ 1)2_ l'xzr)r2

Now, at each y, position in regions, starting at k = 0, we

perform following test

If Py> 0,

Xgr1 = Xk

Vi = Yi— 1

Pan =Py = 200y +1,0

Else

X1 =X+ 1

Yir1 = ¥ — 1

Pas1 = Poy+ 206,001 — 260yin + 12

We repeat the steps for region 2 until y <0

(o Y| P | (it Yier) | 20 Xicor 21, Y Py
(0,6) | —332 (1,6) 72 768 -224
(1,6) | —224 (2,6) 144 768 —44
(2,6) | 44 (3,6) 216 768 208

(3,6) | 208 4,5) 288 640 —108
4,5) | -108 | (5,5 360 640 288
(6,5) | 288 (6,4) 432 512 244

(6,4) | 244 (7,3) 504 384

Scan Conversion | 77

The point (7, 3) will
initial decision parame!

=53(7+zl)2+8’(3—ll’—83‘5:

be the initial point for region 2. T}

ter for region 2 is P

=_9 .
;:h 0 Py (Xie1s Yis1) Pue
(7.3) 23 (8.2) e
(8.2) 361 8.0 22l
(8.1) 297 (8:0) |

So. the pixel positions or points to plot of the given curve
first quadrant using mid-point algorithm are
(0.6), (1,6), (2,6). (3.6). (4.5). (3.5), (6,4), (7.3), (8,2), (8.1)

and (8,0)

e

1

Two-Dimensional Transformations

3.1 Introduction

Complex picture can be treated as a combination of straight
line, circles, ellipse, etc. and if we are able to generate these basic
figures, we can also generate combinations of them.
Transformation means changing the graphics by changing the
position, orientation or size of the original graphics by applying
rules. When transformation occurs in 2D plane then it is called 2D
transformations. Geometrical transformation is a mathematical
procedure which changes/alters orientation, size, and shape of
objects i.e., the co-ordinate description of objects.

3.2 Basic Transformations

The basic transformations are:

e Translation

e Scaling

e Rotation
3.21 Translation / Shifting

Translation repositions an object along a straight line path
from one co-ordinate location to another. A two dimensional point

can be translated by adding translation distances t, and t, to the
original co-ordinate position to move the point to a new position

(x,y) Y
A
° P'(x', ¥') New position

P(x, y) Original Position

L

Figure 3.1: Translation of a point

Two-Dimensional Transformations | 79

X'=x+t

y=y+h .

Translation distance pair (t, ty) is called translation vector g,
shift vector.

In matrix form, we can represent translation as

[GH:)
= at
v Lyl b
P'=P+T
In translation, just position is changed but shape and size are
not changed. Straight line is translated by applying transformatioy
equation to both end points and redrawing the line between those
translated end points. Polygon is translated by adding translation

vector to the co-ordinates position of each vertex and new polygon
is regenerated using that new vertices.

Circle and ellipse are translated by translating the center co-
ordinates and then, circle and ellipse are redrawn in new location.
322 Scaling)

A scaling is a basic transformation that alters the size of
object.

Points can be scaled by s, along x axis and sy along y axis in

new points.

Transformation equations are:
X=X,
y=ys,

If(sy, sy) < 1, then size is reduced.
=1, size ig unchanged (remains same).
>1, size is enlarged.
If scaling factor is less than 1, then it moves the object closer

to origin. If scaling factor is greater than 1, then it moves the
objects away from origin, :

Fixed point scaling

The location of the scaled object can be controlled by
choosing a position called fixed point that is to remain unchanged
after the scaling transformation, Fixed point (x, yy) can be chosen
as one of the vertices, centroid of the object, or any other position.

Steps:

1. Translate object so that the fixed point coincides with the

co-ordinate origin.

2. Scale the object with respect to-the co-ordinate origin.

3. Use the inverse translation of steps 1 to return the object

to its original position.

1A A | la

original translate to origin scaling inverse
' translation
Figure 3.2: Fixed point scaling of a triangle
1 0 xp|[s, 0 O][1 O —x; s, 0 x.(l-5,)
01 y-[{0 &, 0110 1 —ye|=|0 s y0-5,)
00 1 0 0 1/{0 0 1 0 0 1

“T(xs ¥9). S(sx, 8y). T(=X5, =y9) = S(Xp, Y5 Sx, Sy)
X'=Xet (X — Xg) &
Y=yt (y-yosy
OR
X'= x5+ xf1-85)
y' =ys,+ydl-sy)

Two-Dimensional Transformations | 81

where the terms X (1-s0) and yr (1-Sy

points in object.
3.2.3 Rotation

Rotation repositions an

i e

lane. To generate rotation, we $
gosition (Xn ¥o) OF the 1:utanon point @
rotated. If 6 is posiive, o.
direction and if 0 is negative,

Figure 3.3(a): Rotation of a point

From figure, using standard trigonometric identities
In AABC,
X=rc0s¢, y =1 sing
In ADBM,
x=r1cos(6 + ¢)

=r cosf cos¢— r sin sind

=x c0sB— y sinB
y=1sin(0 + ¢)

=rsind cosd + r cosO sing
~ =xsinb +y cosd

) are constant for q]|

bject along 3 circular path in the xy
specify a rotation angle Band the
bout which the object is to be
bject is rotated in counterclockwise
object is rotated in clockwise

direction. .)
1. Transformation equation for rotation when pivot point is
origin
'y D{xlt YJ)
g S i :A (x,)
y ¢ A _—
B M C

— S o

2. Rotation of a point about an arbitrary pivet position
1. Translation object so that pivot point is moved to co-
ordinate origin.
2. Rotate object about origin.
3. Translate object so that pivot point is returned to its
original position.

t

R I
(X, ¥:) pivot M C
position

v

Figure 3.3(b): Rotation of a point

Composite matrix, C.M. = TR(6)T
1 0 x,|[cos® —sin® 0|1 0

=|0 1 y,||sin@ cos6 0|0 1 -y,
00 1 0 0 1/{{0 O

cos® —sin® x (1-cosB)+y, sinb
=|sin® cos® vy, (l—cosB)-x sinB
0 0 1

x'=x,+(x —x,) cosb — (y - y,) sinb

y' =y, +(x —x,) sinf + (y — y;) cos@

33 Homogeneous Co-ordinates and Matrix

Representations

The matrix representation for translation, scaling, and
rotation are respectively:

PP=T+P
P'=S.P
P'=RP

Two-Dimensional Transformations | 83

addition of matrices, whereas scaling

: . 1 ovo0 We may have to perform more
s mfv::l::lil::: litrllp:;c:;teu::;;ject]ikcyscaling the object, then
e ol:;tng;: object, and finally translation. For this, first co-
nlr_ztewc sitions are scaled, then this scaled co-ordinates arc
:oml:i anI:ioﬁnally translated. A more efficient a.p:proach woulg be
to combine the transformation so that final posum:?s are lobtamcd
directly from initial co-ordinates thereby 'chmmatmg the
calculation of intermediate co-ordinates. This allqws_ us to
represent all geometric transformation as matrix multiplication.

We represent each Cartesian co-ordinate position (X, ¥) with
homogeneous triple co-ordinate (X, ys, h)

\u.rtnarex=§hh,)r=‘\}i:1

Translation involves

Thus, general homogenous co-ordinate representation can
also be written as
(xh! Yho h} n (h'x) hY- h)
where h may be any non-zero value. But for convenience, h
=1 is used.

So, 2D position is represented with homogeneous co-
ordinates (x, y, 1). '

Expressing position in homogeneous co-ordinates allows us

to represent all geometric transformation equation as matrix
multiplication.

; mm be obtained by repiacing
Ieter & and t, with their negatives.

1 Rotation
x' cos® -sin® 0] x
y'[=|sin® cos® 0|y
1 0 0 11
P'=R(0).P
Inverse rotation matrix can be obtained by replacing 6 with
-0.
3. Scaling
x| |s, O
Yy |=| 0 s
1 0
P'=S(s., 5,).P
Inverse translation matrix can be obtained by replacing s,

o <
-2 o
Lol T

P (0 ;
and sy with < and 5 respectively.

Code in C for 2D Transformation
#include<stdio.h>
#include<conio.h>
#include<graphics.h>
#include<math.i1>
void draw(int a[2][5]);
void translate(int a[2][5]);
void scale(int a[2][5]);
void rotate(int a[2][5]);
void main()

{ :

int a[2][5], i, gd = DETECT, gm;
initgraph(&gd,&gm,"c:\\tc\\bgi");

printf("Enter the coordinate positions of the lines");
for(i=0;i<5;i++)

{

Two-Dimensional Transformations | 85

scanf{"%d 0,d" &al0][1].&a[1][1]);

y }

i }
draw(a). void scale(int a[2][5])
translate(a). {int i;
draw(a); int sX,sY;
scale(a); scanf{"%d%d" &sx,&sy);
draw(a), for(i=0;i<3;i++)
rotate{a); i
draw(a), a[0][i]=a[0][i]*sx;
getch(); a[1][i]=a[1][i]*sy;
closegraph(); }

} H
void draw(int a[2][5]). void rotate(int a[2][5])
{ {int i, temp|, temp2;
nt1=0: float angle;
for(i=0i<d;it+) scanf("%f",&angle);

| - for(i=0;i<5;i++)

: 2 2L . . {

0 | -

SO0 a1 1) —

: ¢) temp2=a[1][i];

a[0][i]=temp1*cos(angle)-temp2*sin(angle);

. a[1][i]=temp 1 *sin(angle)+temp2*cos(angle);
w.ndwu a[2)[5]) \ ’
{int i _ :

34 Composite Transformation
34.1 Translation

If two successive transformation vectors (t,, t,;)and (t,, t,2)
are applied to a point P, the final position or transformed location
P'is calculated as:

Two-Dimensional Transformations | 87

R —
‘ p =T (tar ty) {T(to t,1)-P}
= {T (tﬂl tﬂ) T (tlis tyl)}P

=T (ta+ o 't t2}-P

The composite transformation matrix for this sequep,, "

transformation is
10 |1 0 | (10 o+,
Olty,{)ltyl.=01tyl+w2
00 100 1 00 1
This shows that two successive translations are additive.
3.4.2 Rotation

P =R(6,).(R®).p}={R(6,).R(6)} P=R(6) 8 6,)*P
cosB, —sind, 0}[‘;0&81 —sin®, 0

sinG, cosd, Ol sinG, cosd, 0=
0 01 0 01

sin(, +6,) cos(6, +8,) o
0 0 1

cos(B, +0,) -sin(,+8,) ;}]

Successive rotations are additive.
3.4.3 Scaling
P'=5(Sx, ,Syz){‘-f\(Sx,.st'}'- {5(5%3,5y,)5(Sxy,5,)} P = 5(Sx,,5x,,Sy, Sy,)P

s; 0 O0ffsx, 0 0] [sx;sx, 0 0
0 sy, Ol 0 sy, 0|= 0 sy,sy, 0
Rt 0T 0 0 0 1

Two successive scaling are multiplicative
Composite transformation indicates combination of different
transformation in sequence to obtain desire result or
4 sequence of two or more successive
Successive translation), two successive

_—w—mm

3.5.1 Shearing

A transformation that distorts the shape of the object such
that the transformed shape appears as if the object was composed
of internal layers that had been caused to slide over each other is
called shearing.

i) Shearing toward x-direction relative to x-axis is given by

X'=x+sh*y

¥y =¥
Y Y
1,1
(0,1) kg @1 (9
3 }(X
(0,0 (1,0) (0,0 (1,0)

Figure 3.4: Shearing towards x-direction

In matrix form,
x' 1 sh, 0|/ x
y|[=|0 1 O}y
1] |0 0 .1)1

+ sh,is any real number -
, = co-ordinate position is shifted horizontally by an amount
proportional to its distance y value from the axis.
s If sh, is negative, object shearing is towards left.
ii) Shearing towards y-direction relative to y-axis is given
by
X'=x
y=xxshy+y
In matrix form,
! 1 9
=|sh, 1
00

=

0
0
1

—_—
-t

Two-Dimensional Transformations | 89

p— —

Y, (1,3)

iii) Shearing in both direction is given by

x'=x+shyxy Y
y=xxsh+y (3,3)
W e o] BY
‘|=(sh, 10 (1,2)
y Pl oo :
1 0 0 1|1

Fig. 3.6: Shearing
towards both directipn

iv) x-direction shearing relative to other reference line is _,
X'=X+sho (Y - Yrr)
L
x'[[1 sh, —sh, *yref

L |0 o

XM= :

iii)

ate position vertically V)
ce from the reference

)/
(1, 1) (0,1) 3.5.2 Reflection _
(1) :l (1,2) It is the transformation that produces mirror image of an
L X X object. The mirror image for a two-dimensional reflection is
0,0) (1,0) .0 : ! St e
g ; obtained by rotating the object 180° about the reflection axis.
Figure 3.5: Shearing towards y-direction i) Reflection about x-axis or about line y =0

Keep 'x' value same but flip 'y' value

=X y 1

y'=-y A

x 1 0 0fx 2 1 |3

yl={o -1 olly — x
1| [o o 11

EvE

Fig. 3.7: Reflection about x-axis
Reflection about y-axis or about line x=0
This transformation keeps y value Y
same but flip x value. That is, ' [> 4

x'=—x

V=Y X
'=Rg.P

P'=Ry Fig. 3.8:Reflection
x| =1 0 0)x -about y-axis
yl=| 0 1 o]y
1 00 1)1 y

Reflection about origin A

It flips both x and y valuei.e., &
= _x V

y'=-y o

Reflection about the line y = x Fig. 3.9: Reflection

Steps: about origin

1. Rotate about origin in clockwise direction by 45°, rotates
the line y = x to x-axis. :
2. Take reflection against x-axis

Two-Dimensional Transformations | 91

3. Rotate in anti-clockwise direction by same angle.

Rfy-x = R(8) ' RE:x R(E)

| I 1 =l
1 2 3 4
Figure 3.10: Reflection about the liney=x
cosB —sinf 0 I 00
R(6) ' =|sin@ cos 0 Rf,=|0 -1 0
0 01 0 0 1

cosf sinB 0 010
R(B)=|-sin® sin® 0 Rffyery=|1 0 .0
0 0 1 0 0 1

v) Reflection about the line y = —x

Steps:
r \ I. Rotate about origin in clockwise direction by 45°, in,
rotates line y = x to y-axis.
2. Take reflection against y-axis.
3. Rotate in clockwise direction by same angle.
Rfyy= R(G]_l x Rfy x R(0)

where
cosf —sin® 0] . -1 0 0
R(6)'=|sin® sinp 0 Rf,=| 0 10
0 01 00 1
14 cosB sinf 0 0 -1 0
R(8)=| —si
‘ ’ (0) sin@ cosf Rf,_,=|-1 0 0
0 0 1 0 0 1

2. Rotate the line and object about origin until the line

coincides with one of the co-ordinate axis.
. Reflect the object through about that axis.
. Apply inverse-totation about that axis,
5. Translate back to original location.

CM.=T'R(8) 'R, R(6)T

3% >

e

1. Initial Position 2. Translation 3. Rotation

4
Z\ - <

I <7 I

4. Reflection 5. Inverse Rotation

Figure 3.11: Reflection about the liney = mx + ¢

Here,
[1 0 0][cos¢ -sin@ 0][1 0 0
YI|=|0 1 ¢||sind cos@ 0f|0 -1 0
1] [0 0 1 0 0o 1|{o o 1
[cos@ sin@ O][1 0 07[x
~sin@ cosf 0[|0 1 —cf|y

0 0 1{lo 0o 1|1

1-m® 2m -2m]|
o [1+m? 11+2m2 1+m?
2 m* -1 2cm

OR, | '|=| ==

l+m2' 1+m? 14m?
1 0 0 1| [

6. Inverse Translation

Two-Dimensional Transformations | 93

‘

World coordinate

3.6 Two-Dimensional Viewing -
‘ — the method about how

Two- Dimensional Vie“’i_ﬂg isl - T i Or{ce individual C'b‘jects have been identified or specified,
display 2D objeet in display device: It is the _Oml(ﬂi 1111:: 1anism {i th(.)se objects are placed I!-IﬁO appropriate position within a scene
displaying views of picture on & e dewt:E- d B pm}‘“'ﬁ“ using reference frams:‘ B St e{ich other. This reference frame
allcm‘s' 2 user to specify which part of .3 dehfle il;:rure 1510 be i called world co-ordinate. It contains many objects with one unit.
displayed and where is 10 be dls_playcd in device. Any CU“.\'CIIH-;H[
Cartesian coordinate system, referred to as the world co-ordin, i . _ | | _

{ frame. can be used to define the pictures. Ylewmg COOr. inate is Iusejd to d_ef“me window in the world
e P co-ordinate plane with any possible orientation, i.e. viewing some
For a 2D picture, a view is selected by specifying a sub urey

: S objects or items at a time.
of the total picture area. A user can select a single area for display,

Viewing coordinate

or several areas could be selected for simultaneous display or fo; Normalized device coordinate

an animated panning sequence across a scene. The picture parts . In normalized coordinate the coordinates are in range 0 to 1.
within the selected areas are then mapped onto specified arcas of Generally, a graphical system, world coordinate positions are
the device co-ordinates. When multiple view areas are sclecied. converted to normalized device coordinates before final conversion
these areas can be placed in separated display locations, or some to specified device coordinate. This makes the system independent
areas could be inserted into other, larger dispiay areas. of the various devices that might be used at a particular

Transformation from world to device co-ordinate involve workstition.
translation, rotation, and scaling operations as well as procedures Device coordinate
for deleting those parts of the picture that are outside the limits ol a
selected display area, also known as clipping. Windowing is the
process of selecting and enlarging the portions of a drawing.

When the world coordinate description of the scene is
transformed to one or more output device reference frame for
display; the display coordinate system is referred to a device
37 Coordinate Representation ' coordinate or screen coordinates in the case of video monitor.

With few exceptions general packages are designed to be 3-8 The Viewing Pipeline
used with Cartesian co-ordinate system. If in other coordinate ’

oo S s s s Window
nverte
! A world coordinate area selected for display is called
Modeling coordinate/local coordinate/master coordinate window.
E‘:’:ﬁg i“di"’ii.l“ﬂl object or model has its own coordinaic View port
local . e system is called modeling coordinate Of An area on a display device to which a window is mapped is

i 01' B ?B-Drdmte The individual object has
ond Iis image can be constructed in scpardl®
as modeling coordinate.

el

own called view port.

Window defines what is to be viewed. View port defines
where is to be displayed. Window and viewport are rectangular in
standard position, with the rectangular edge parallel to co-ordinate

e Two-Dimensional Transformations | 95

i R —

&

axis. Other shapes arc also possible but take longest time |
process.

The mapping
co-ordinates is referred K
2D viewing transformation 15
or windowing transformation.

of a part of world co-ordinate scene to devic,
d to as a viewing transformation. Sometimes
is simply referred to window to View‘-

port 3
Window Viewport
vau
e 1
! i
' 1
1
] b
! '
- i
¥Vmin '__________:
XWanin XWinax XVmin XVinay
World co-ordinate- Device co-ordinate

Figure 3.12: A viewing transformation using standard
rectangles for the window and viewport.

Mc [Construct WC |y [Convert |y [Map VC to NVC
——|scene using MC #] WC to VC using window -
Transformation viewpart
specification
DC Map
<— Normalized
viewport to
device
coordinate

Figure 3.13: 2D viewing transformation pipeline

mﬁ?::e m"ﬂl life, we see through a small window or the
inder of a camera, a computer-generated image often depic's

a e 2
_ __ iew of a > scene. Objects are placed into the scene by
gocne, 4 lations to a master coordinate syste™
world coordinate systems (WCS).

w.--.;m..._. - -

A rectangular window with its edges parallel to the axis of
the WCS is used to select the portion of the scene for which an
jmage is 10 be generated (displayed).Sometimes an additional
coordinate system called the viewing coordinate system (VCS) is
introduced to simulate the cffort of moving or/and tilting the
camera. On the other hand, an image representing a view often
pecomes part of a larger image, like a photo on an album page,
which models a computer monitor's display area.

Gince monitor sizes differ from one system to another, we
introduce a device-independent tool to describe the. display area
called normalized device coordinate system (NDCS) in which a
unit (1X1) square whose lower left gorner is at the origin of the
coordinate system that defines the display area of the display
gevice. A rectangular viewport with its edges parallel to the axes of
the NDCS is used to specify a sub-region of the display area that

embodies the image. The process that convert object coordinates in

WCS to normalized device coordinate is called window to
viewport mapping or normalization ‘transfonnati:cn.

Figure 3.14: WCS, VCS, NDCS and workstation

The process of mapping normalized device coordinates to
discrete device coordinates is called workstation transformation,
which is essentially a second window to viewport mapping, with a
workstation window in the normalized device coordinate system
and a workstation viewport in the device coordinate system.
Collectively these two coordinate mapping operations are referred
to as viewing transformation.

Two-Dimensional Transformations | 97

e : — —

{ 39 Window to Viewport Mapping (Coordinat, 6 = R g,
Transformation) .- X — o i
i We transfer object description to normalized dev, -
coordinates using a transformation that maintains the same relat;. S, = W
placement of objects in normalized space they had in view, min
coordmates. Steps (for Window to Viewport Transf,

y ormation):

If a coordinate position is at the center of the viewir i

window for instance it will be displayed at the center of viewpon D

y P . |
T [~
Xy
(Xas Ya) Yimax [= = y s
Vema ==~ (X0¥,) b

; Yoma |- -4
! ¢ '
Nwrrur Namar Xoman - S !)

X, X,

World co-ordinate Device co-ordinate

Figure 3.16: Window to viewpart transformation
Figure 3.15: Window to viewport mappi, : : ;
5 PR The object together with its window is translated umtil the

A window is specified by four world co-ordinates x,, . lower left corner of the window is at origin.
Xomas: Yoma, Yamax A viewport is described by four device co- 2. Object and window are scaled until window has dimension
ordinate Xvmems Xvmaxs Yvman, Yvrax TO maintain the same relative _ of viewport,
m the viewport a5 in window, we require. Perform a scaling transformation using a fixed-pomnt position
X, ~X, X, - X ' pf(me,- Ywmin) that scales the window area to the size of the
ik viewport 3 -
e T 3. Again, translate to move viewport 10 its correct position.
- Viewing Transformation:
e Vomp | Ve Yy 1. Translate window to origin by
Yoaw " Yoma Ywmax - Ywmia
“"“mﬁuhw R
Ko ™ Xomae t (X ~Kora)e 2. Scale window such that its size is matched to viewport.

=%

(g, o Yom ~Yemn Xy = Xomin+ (Xu— Xomn)S,

- = Ywmin g = l
| Y }'Iwmu.im —30+(30—ZU]E=30+5=35
late 1t DY
[3. :etrans ate ! Yo = Yomin+ (Yo~ Yomin)$,
x = Xymin : 1
=40 + (80 — 40) = =
Ty = Yamin T - (40) 2 =
Composite matrix (CM) = T S Lo By 2" method
I 0 =Xumn 1. Translate window to origi
- gin
T. = Translate window t0 origin =(ﬂ] o= YWW"J Tx=—Xwmin
N 00 1]
Ty-"— ""Ywm'm

S, = Scaling of window to viewport 2. Scale window such that its size is matched to viewport

S = Xg}g’n_ x\rmin

Sx 0 0 mex = mei.n
=] 0 s 0 o Voo W
| 0 0 1 ¥ Ywmax_ Ywmin
' - P . Retranslate i
Ty = Translate viewport to original position 3 _];‘c: - l?te 1t
1 0 Xy min Ty= vain
=0 1 v 1 0 X I[Sc 0 01 0 —Xomim
o8 i CM.=| 0 1 +Yumn || 0 S 0 |[0 1 —Yoma
Q. Consider the window is located from Xomin = 20, X ymax = 80, Lo 0 1 o0 o 1JLoo 1
¥omin = 40, Yymax = 80, and a point is located in 30, 80. - 1 I 5 8
Identify the new location of the poinf in the view port ' 0 30 2 1 0 =20
considering viewport size Xomin = 30, Xomax = 60, ¥omin = 40, = 10-1 & I g % o ||9@ 140
Fopax = 60. L0 0 1 J 00 1
Solution: to L0 01
= [1
Xomin= 20 Kovmax = 80 "10307 30 ~10
Yomia=40 Y oomax = 80 o1 40 o 1 .
Xomin= 30 Xymax= 60 _ 27
"y L0 0 1]
vmin = 40 ! . L0 0 1
. L 0 -10+30 : 0 20
2 = Z: 5 :
= 1L = 1
0 2 —20+40 0 3 20
L0 0 1 00 1

Two-Dimensional Transformations | 101

p= CM. xP i
.21- 0 20 |[30 ::e;:erfonned for all objects, including those outside the window
0 i
=l 7 51- 20 8 3.10.3 Some Primitive Typeg of Clipping
I « Point clipping
0 0 1 » Line clipping (straight line segment)
15+20] [35 + Area clipping (polygon)
~|40+20|=| 60 + Curve clipping
I 1 » Text clipping
Pl =(35,60) 1. Point (.jlippmg '
Assuming that the clip window is a rectangle in standard

position, we save a point P(x, y) for display, if the following

310 Clipping Operations
o inequalities are satisfied.
W Sx W

3.10.1 Introduction

Procedures that identifies those portions of a picture thy; e
either inside or outside of a specified region of a specified reyj,) IWain S VS IW
of space is referred to as a clipping algorithm, or simply clipp;p, (XWinins YWinar) (XWoenaxs YWaar)
f The region against which an object is clipped is called a '(-J,'LP
' window', - B
(xwmlﬂ! Wmm) [xwm' Ywmmj

3.10.2 Applications of clipping

Clipping is used for extracting part of a defined scenc 1 Figure 3.17: Point clipping

w'rl,-w‘ and ideﬁt}ﬁying visible surfaces. It is used for drawing and - s

painting operations that allow parts of a picture to be selected for The. eige . of the clip window can be cither WC window

copymng, moving, erasing or duplicating. Clipping is used for !Joundary or viewport boundaries. If any one of these four
inequalities is not satisfied, the point is clipped (not saved for

creating objects using solid-modeling procedures. Clippi
. / . ! pping ;
algorithm can be applied to window coordinates, so that only the dispiny).
2. Line Clipping

zﬂml _Oflthc window interior is mapped to device coordinates.
mappedmm;:es{’wmem?omlmd world co-ordinate picture can be P,
. ce coordinate or NDC i Yains
viewport boundaries, , then clipped against 5
WC clippi B 3
clipping oV thfhse primitives outside the window / P, B P
nsideration, thus eliminatin th ing P P
necessary 1o transform thoge pripic: ng the processing P . s
to ™M those primitives to device space necessary : P, <]
P,

ther hand, mwmw Viewport clipping on
eWing and geometric by allowing concatenation
Y LTS g b - uf[mmceSl Bu‘ VieWpon

to device co-ordinates

Fig(b): After clipping

Fig(a). Before Clipping
Figure 3.18: Line clipping

Two-Dimensional Transformations | 103

pwindDW
ral parts. b
t lies complerp,

nst rectangular cli
edure involves seve

determine whether 1
es not, 101s tested to deterngg,,

window. Finally, 1t .,
de or outside, we oy,
romore chippi,

Line clipping 384!

A line-clipping Pro¢
ed w0
dow. It do
ly outside |hc_
lete 1nst

given segment 15 test

inside the clipping win

whether 1t ltes complete

cannot identify @ line a:i LIn:uEn ol %
! e -alculati

intersection ¢

perform

boundaries

We process line through the 'Inside-outside” test by check iy,
¢

he line endpoints. A line with both endpoints outside anyone (|

- line i ' ;

:hL' clip boundaries (line P, to Py is outside the window. All ot
< S

lines cross one or more clipping boundaries and may requi;.

calculation of multiple intersection points. For a line segment w i,
y and (X, y2) and one or both end points outs.

end poian (X1s M1 ; .
¢. the parametric representation could be use

the clipping rectangl
X=Xt X~ x1)
y =y, *+ uly:- y1), where O<u<l

If the value of u is outside the range 0 to 1, the line docs 1ol
enter the interior of the window at that boundary. If the value ol u
is within the range from 0 to 1, the line segment does indeed cross
into the clipping area. This method can be applied to each clipping
boundary edge in turn to determine whether any part of the linc
segment 1s to be displayed.
Cohen-Sutherland Line Clipping

Cohen-Sutherland line clipping algorithm is one of the
oldest and most popular procedures. It uses bit operation 10
perform this test. It speeds up' the processing of line segments by
performing tests that reduce the no. of intersection that must be
calculated. _

code) P_:,I‘.mh.i“ "‘d‘Polﬂl.l = 4 digits binary code (called a region

Lower order bit to identify the location relative to boundary.
 wis T bit (bitl) set 1o 'I" if end point is at the left side of the
SRfE WM numbering the bit position in the region
om right 10 lefl, Bit 2 is'set to 1" if end point lics 4

_—

right side else set'0". Bit 3 jg geq 4 1y
set'0". Bit 4 is set to'1" if end poing Jies

if end point lies bottom, else

top, else set (.
1001 1000 1010
0001 |~ 0000
/ 0010
0101 01060 LIS/

Figure 3.19: Clip window and region code

Algorithm

Step 1
Step 2:

Step 3:

Step 4.

Assign Region Code (TBRL)

Establish region code for all line end points.

Bit L issetto'l" if x < X, else set 10 0.

Bit2 issetto'l" if x > x,, else set 10’0/

Bit3 issetto'l'y < y,.. else set 0

Bit4issetto'l'y >y, else setto 0/

Determine whether line is completely inside or outside

window using test.

a) If both end pint have region code ' 0000° line is
completely inside. '

b) If logical AND of end points of a line not '0000' line is
completely outside.

If both condition of step 2 fails. i.e. Logical AND give
'0000" we need to find the intersection with window
boundary.
Here,
YN
X— X
a) . Ifbit 1 is 1, line intersection with left boundary, so,

¥i = yrtm(x-x;) where X = Xy,
Ifbit 2is 1, line intersect with right boundary, so,

Yo = yrHm(x= X;) Where X = X,

b)

Two-Dimensional Transformations | 105

ect with lower boundary, so,

| ¢) Ifbit 3is 1, line inters

& ;:2 (y-y)where y = Ymis

X=X
ne intersects with upper boundary, so,

d) Ifbit4is L1

1 e
X=X+ -9 where y = Ymx

Here, x; and y; are X, ¥ intercepts for that line, update

5: Repeat step 2 and 4 till completely accepted

Step
Liang-Barsky Line Clipping

Faster line clippers have‘
analysis of the parametric equation O
written in the form,

been developed that are based o
f a line segment, which can be

X=X +u Ax
y =y +u Ay, 0susl
whereAx = Xa— X1,48¥ = ¥r= ¥
Using these parametric equations, Cyrus and Beck
developed an algorithm that is generally more efficient than the
Cohen-Sutherland algorithm. . Later, Liang and Barsky
independently devised an even faster parametric line-clipping
algorithm. Following the Liang-Barsky approach, we first write the
point clipping condition in the parametric from,
XWiminSX1 + U AXSXW ey
j-"WmS)’] +u Aysywmax
Now, we can write
—u AX £ X — XWip
U AX € XWiex — X
—UAY Y|~ YWy
u ﬂy < YWinax — Y
v E;:'h of these four inequalities can be expressed u.pcs dv
‘4where parameters p and q are defined as

k=1 (13 the line i.l'j,slde the left boundazy} pl = -Ax, ql =x-

Kwmin

k = 2 (is the line inside the riéht boundary)p2 = Ax, q2 =

Xwmax~X1

k =3 (is the line inside the bottom boundary)p3 = -Ay, q3 =
¥ 1=Y wmin ’

k = 4 (is the line inside the top boundary) p4 = Ay, q4 =
Y\vmx'YI

when Py < 0, the infinite extension of line proceeds from the
outside to inside of the infinite extension of this particular clipping
poundary. When P, > 0, the line proceeds from inside to outside

Trivial Rejection
The line with p, = 0 for some k and one g, < 0 for these k is
rejected. For line with p, = 0 for some k and all g,> =0 for those k,

line is parallel to one of the clipping boundary and some portion of
the line is inside. For intersection with boundary, the parameters

are supposed to be ry ry is given by
2.4
T = P_Z i N5)
Clipped line will be s \ o v)
22 X2
X.|' =x;+u1Ax \\
yi'= yrtwdy (2 ¥2)

Figure 3.20: Clip window, line and intersection points

The value of r, becomes candidate for ujif pk <0 . The value
of ul is greater or equal to 0. It is for intersection with the
boundaries to which line enters the boundary = maximum value
between 0 and r. :

X' =X+ wpAx

¥i'= yitwly

Two-Dimensional Teansformations | 207

ual to 1. It is for intersection with the
r or € inimum
csseICh line leaves the boundary. Its munimum vq|,
1

Algorithm
=(for
) I
now test gk o
bouﬂ:mzk Ifone k=< 0 then the line 18 completely outsiq
For these K, 11 Y%
And can be eliminated.

some k, then the line is parallel to the clippiy,

,‘ik., it gives the intersectiqy
k

‘ 2) For non Zer0 Peo calculate 7, =

int. _ o
2) ll}:pﬁﬂ then line proceeds from outside to inside boundary,

G yy to determine intersectiop
P
point with the possible extended clipping boundary k ang

obtain a new starting point for the line at u,.
3) If p>0 then line proceeds from inside to outside the

|
‘ Calculate u, = max(0,{r i1 =
|
|

boundary.Calculate u, = min(L {r :7, :ﬁf_})m determine
P

intersection point with extended clipping boundary k and
obtain a new point at u;

4) If u,>hz, then the line is outside and therefore rejected or line
is discarded.

5) The line is now between [u;, u,]

SOLVED NUMERICALS AND DERIVATIONS B
L. Rotate a triangle A(5,6), B(6,2) and C(4,1) by 45 degree

about an arbitrary point (3,3). [2076 Ashwin Back]
Solution:
Composite matrix
=To Rus Tea) .-
' 0 370 eosds® sindse 071 0 -3
=01 3 Sind5° cosdse (g ¢ .3
S "l 00 1

0 0 1

11

F - 3

V2 2 56 4
L L 8 6 2 1

1

V2 2\ 1 1 1
0 0 1

i LI
V2T 3
-__i‘*l—zﬂll_—l-.,.l
T

1 1 1

2. Consider a triangle A(0,0), B(1,1), C(5,2). The triangle has
to be rotated by an angle 45° about the point P(—1,-1).
What will be the co-ordinate of new triangle.

Solution:
CM = Ty Ras T
"1 0 -1 [cos45° —sind5° 01 0 1
=0 1 -1 sun45° cos45° 0 011
L0 0 1 0 0 14Lo 01
T T
N
=] il ol
v
I— 0 0 | —
P'=CMxP
Pl b 45
2 2 g 175
=l 1 1 01 2
L\ﬁ \2 1 24
0 0 1 -
= 3 >
i -1 ‘\ﬁ—l
- 9
2-1 22-1 \!71
[1 1

Two-Dimensional Transformations | 109

o

i g :
Al=(-Ly2-D ’-cosgoo ~sin9° o]y o _s

105
B =(-LN2-D \ =fo1 4 [sin%" cos90” 0f|g -4}
i) » about a fixed poing 2 0 -1 9‘|
3 Scale an object (4. 4. (3. 2. (5. 2) 4.3 b B
by 2 0 0 lJ
Soduzon: _ ; Now P'=C.M.* P
P‘: : > L2
) T o420 01 0 -4 0 -1 94f5 7 3] [-5+9 -3+9 -34+9
i ' - =[1 0 -1f|s 3 3|[=| 8-1 7-1 3-1
CM = g 3 020,01 -~ [
001 00 100 I|] o o0 lj_l 1 1 1
1 £72 0 - 4 6 51;
= D X } : -6 E= 4 6 2‘[
: 60 i 11 1
B il T 18 ekl . New co-ordinates are (4,4), (6.6) (6.2)
=19 2 -6-3/ =10 2 =3 5. Reflect an object (2, 3), (4, 3), (4, 5) about line y =x + 1.
o9 1 _ 00 1 it
% .3 5 Here, m=1
=4 2 2 c=1
L Y CM.=T'R,'Rf,R,T
P=CM~P .)
2 0 —4if4 3 & 10 0 -cos45” §in45° 0
- 3 3 . R Wi "
=0 2 -3{l4 2 2 T—Ul—l.Rg—SmtiScos:lSO(:
o o 1jj1 1 1 e X | g
8-4 6-4 10-47 [4 2 6] 3 1 00 [cosds’ —sinas” o
=i$-3 4-3 4-3:=/5 1 } R, =|0 -1 0| Ry'=|sind5’ cosa5’ 0
S L L "o 0 0 01
So, scaled points are (4, 5), (2, 1) and (6, 1) e
4 Rotate the triangie (5,5), (7,3), (3,3) about fixed points (5.4) | r=lo 11
hmduhivby”'. b o U1
Solution;:
P=CM.xP

MR,
ﬁi“"‘""—-—————-—_____.____ gy —— Two-Dimensional Transformations | 111

0 1 l] 2 4 4 2 24 01 0
=[i@8 1{l3 38 =[3 % % B LN T
00 |J 111y [P b 00]
Required points are(2,3), (2.5), (4,5) Ag:];:‘srlhle n:(atrl-ix for tch reflection along x-axis followed by
6. Reflect an object (2,3), (4,3) and (4,5) about line y = 2x+ 00_ er clockwise r(_}tatlon by & degree
) cosa -sina 0[[1 0o ¢
Solution: =|sin@ cosa 0|0 -1 g
Hints: | 0 0 1jjo o0 1
Here, m=2,¢c=1 [cosa sina 0]
1. Translate with value of ¢ = |ding: —cma Bl
2. Rotate by angle tan™ (m) 0 0 1]
3. Reflect about x axis Now equating matrix (1) and (2)
4. Again re-rotate
) cosa=0
5. Translate W
7. The reflection along the line y = x is equipment to the —cosoi=0
reflection along the x axis followed by counter clockwise o
rotation by c degree. Find the angle c. [2071 Chaitra] ’
8. Find the transformation matrix that transforms the
rectangle ABCD whose center is at (4, 2) is reduced to half
P = f7 [7 . of its size, the center will remain same. The co-ordinate of
% . %l ABCD are A(0, 0), B(0, 4), C(8, 4) and D(8, 0). Find co-
1 = i ‘ordinate of new square. Also derive the transformation
D [\ matrix to convert this rectangle to square. [2072 kartik]
St Solution:
Steps for reflection about line y = X
i) Rotate about origin in clockwise direction by 45° B(0,4) _C(84)
ii) Reflection about x —axis
iii) Rotate in anticlockwise direction in 45° ¢
Rfy-y = R(O)" x Rf,x R(6) *(42)
cosd45 -sind5 0]]1 0 Of[cos45 sind5 0] X
' = |sin45 cosd45 0[[0 -1 0||-sind5 cos45 0‘ A(0,0) D(8,0)
| 0 o 1jfo o 1f[o 0o 1
= Two-Dimensional Transformations | 113

112 | Insights on Graphics.

The transformation matrix that transformations the rectangle
ABCD whose center is (4, 2) is reduced to half of its size
keeping the center same is,

P'=CM.*P
10 42 0 0][1 0 -4
CM.=[0 1 2[|0 1 0f[j0 1 -2
00 1[/]0 0 1f[l0 0 1
1o 4]{V/2 0 =21 12 0 2
cCM=|01 2{[0 1—2}=0 1 0
0 01 0 0 1 0 01
Now to find new coordinate of new square,
A'=CM*A
1/2 0 2][0] [2]

0 1 0f|0|=|0

Lo o 1[1] | B(2.4) C(64)

B'=C.M*B
(172 0 2][o 2
0 1 0)|(4|=|4
[0 0 11 1

Al2,0) Al(6,0)

C'=CM.xC
(172 0 2][8] [6
0 1 0|[4[=|4a
L0 0 1j[1] [1]

D’=CM.xD

172 0 2|8 6
=10 1 0({0|=]0
1/{1 |

’(‘:;)mﬂim of new square are (2,0), (2,4), (6,4), and

TEN) Tlghes Bh Compiiter Graphics

Steps to get the transfy
rectangle to square are;

'mation matrix to convert this

i. Translate by (-4, -2)
ii. ScalebyS=112
iii. Rotate by (4, 2)
10 4|12
CM.=|0 1 2| ¢
00 1||o

0 0|f1 0 -4
-1 0|0 1 -2
0 1flo o 1
9, Given a clipping window A(10, 10), B(40,10), C(40, 40)
and {)(M, 40). Using Cohen-Sutherland line clipping
algorithm find region code of each end points of lines PP,
P3Py and PsPs where co-ordinates are P,(5,15), P,(25, 30),
Py(15, 15), P(35, 30), P«(5, 8) and Py(40, 15). Also find
clipped lines using above parameters. ? [207] Shrawan]
Solution:
Step 1: Assign the region code.
For P, (5, 15)
5 <10 true so bit 1= 1
5>40 Falseso bit2= 0 = P!
15<10falsesobit3= 0 [A(0I0)
15>40 false sobit4= 0 | "D D3
Region code for
P, (5,15)=0001
For P, (25,30)
25 <10 false so bit 1= 0
25> 40 False so bit 2= 0
30 <10 false so bit 3= 0
30> 40 false so bit 4= 0
Region code for P, (25,30)= 0000
For P; (15,15)
15 <10 false so bit 1= 0
15> 40 False so bit 2= 0

D(10,40)

B(40,10)

Two-Dimensional Transformations | 115

15 < 10 false so bit =0
15 > 40 false so bit 4= 0
Region code for P; (15,15 0000

For P, (35.30)

35 < 10 false so bit 1= 0

35 > 40 False so bit 2= 0

30 < 10 false so bit 3= 0

30 > 40 false so bit 4= 0

Region code for Py (35,30= 000 0

For P (5.8)
5<10truesobit1=1

5>40 Falsesobit2= 0
8<10truesobit3=1

8 >40 false sobit4=0

Region code for Ps (5,8)= 0101

For P (40,15)

40 < 10 false so bit 1= 0
40 > 40 False so bit 2= 0

15 <10 false so bit 3= 0

15 > 40 false so bit 4= 0

Region code for P (40,15)= 0000
Now, for line P, Py, P,(5, 15), P5(25,3 0)
Region code for P;= 0001

Region code for P, = 0000

Both end point have not region code '0000', line is not
completely inside.

il. 'l_'he Iiogical AND of end points of the line P, P; is '0000', so
line is not completely outside.

So now,

med=h 30-15 15 3
X-X ~ 25-5 =20 =3

Megn,

If bitl is 1, line intersects with left boundary.
So,

Yi=¥i +1-n(x‘rmn LK])

3
=15+=(10-5
V=3

=18.75
y,=1875=19
xi=10

Region code is,

10 < 10 false bit 1 =0

10> 40 false bit2 =0

19 < 10 false bit 3= 0

19 > 40 false bit 4= 0

So, the required line is P, (10, 19) and P, (25,30)

10. Use Liang Barsky clipping method to clip a line starting
from P1 (10, 10) and ending at P2(110, 40) against the
window having its lower corner at (0, 0) and upper right
corner at (100, 50)

Solution:

(100, 50)
P2(110, 40)

/

P1(10, 10)
(0,0)
K Px L ry
1 |-Ax X1 Xymn |r1 = 10/<(100)
=-(110-10){ = 10-0 =-1/10
=-100 =10 = candidate for u,
i.e., pe<0

Two-Dimensional Transformations | 117

|- 5 Tl

RS - N
s g T -0
e (110-10) | = 10010 = @Y
= 10w = « camilat b w
Le. pd .]
[ey T e 1 = 1030
- -1y = 100 = .13
= .38 =10 = camdulale B u
a oM< |
s Ay | S_— —— l
ey (-0 =)
- 10 (e | = camddate for o
ie P -0
[S ot e e ——]
We ke o, =0 and 5= 09
(lipped hne

=100+ 100=10
Y= 10+0=30=10

el e 100=10+09 <« 100 = |00
yr=yl *m= 10D=10+09«30=137

11. Siwste the condition of poimt clipping perform

clippang
operation for the following wsing Liang Barskey lime

lippang 12070 (
Solunon

Clippmg window: (%, Yol = (2.5)

AR (V. Youe) « (15,50)

Lime (x,y,) = (~2.2) and (x., y,) = (43.40)

Ax=np-x, =48 - (-2) = 47

AY " ¥y, =40 - 2 = I8

118 | insights on Computer Graphics

RRE
-
& (4% 40y
— 4
i] -
e | ————
["~ I
L Y
% L
- - - - d
0 Ay =47 peD R~ Ny = 4 O OKSlju,)
I =47 | 37 0 TENu,)
2 L™ 1) i~ Yom ™ -3 QOTENu,)
b . . 4
5 Ay = 38 Yo~ ¥ =48 1205w

u.‘ﬁmu(!_r,a
= mand@, O ORS] 007N
=0 088
w = men | 0,0 = muni |, 0787 | 263) - 0 7RY
TR TR . LRl (LY B R R T
P ety = -2+ 0088 » 383
RER s - ATET 47 = 39
ERTAN=20TETx -1
Rogusred posnts ¢ (2.°) and (35, 32)
12 Wrise dowm the condition for poimt clipping. Find the

cligped region in window of diagonal vertex (10, 10) and
(108, 100) for lime PAS, 120) and P480, 7) using Liang-

Rerky lime cdippumg method [2072 kartik|
Salution:

m&dﬂ:dmum-uummm

m“uwnmﬂl.y}ialduphy. if the following

megualitics arc satisfied

e s ————)

el

k ™ L [m_#l.h

=3 | ax=-AT <D | MR = A | 0088 14w)

| | an=a7 g =37 | OTET(u)
1 —fy = =38 o= Y = =3 l noTED{u}

7 |ay=3s Yoy =48 | 1263w

| | 0, 1)
= aTEELY,
l’ll =10+0x 100 =1 H|-mmulm“ﬂmm

ug = min(1,) =min{1, D787, 1.263)= 0787
gtk iy =2 % 0,081 x 47 = 1.997 =2
yi'= g Ay =—2+00851 « 38 =35
w=E + usdx=—2+ 0.787'= 47=35

Xy'=x] 4wy lm-luwazlm:m
Yoyl 4y x IIBEI= 1o+py =30 =37

I7, Mmmnfmp%m

operation for the ;
‘M"Elmﬁ”’m e ""*;Ti: p=y+wly =2+ 0T8T x 3B =132
Solution: (267 Choiy Required potntsare (2,5) ond (35, 32)

12 Wrire down the condition for polnt clipping. Find the

Clippi indow: (%, =
Mg WINGOW! (Xin, Yorin) =(2,5) tlipped regina in window of diagonal vertex (10, 10) and

A =i
1 (s Yome) = (35,50) (108, 100) for line Py(5, 120) and P80, 7) using Liang-
Line (x1y:) =({~2,2) and {x,, ¥1) = (45,40) Barsiy line cllpping m , e L,
AX = X% =45 - (-2) = 47 sk e
TN M.mﬂ_ g that the clip window is a rectangle in standord
. Pamibon, we save o polnt P =
inequalifies re e {x, ¥} for display, if '.he fﬂ“nwing

——— \—\
118 | Insights an Computar Graphics T s e —

(Xwmin, Ywmax) (Xwmax, Ywmax)

Xwmin < X < Xwmax
Ywmin < ¥ < Ywmax - e, y)

(Xwmin, Ywmin) (Xwmax, Ywmin)

The edges of the clip window can be either we window
boundary or viewport boundaries.

If any one of these four inequalities is not satisfied, the poin;
is clipped i.e., not saved for display.

Here,

Kymin= 10

Yomin= 10,
Xomax= 100
Yomax— 100

(x1, y1) =(5, 120)

(x2, y2) =(80, 7)
Now, we have to find out the value of u and u, by
calculating py, qi, 1y fromk =1 to 4.

Then, the clipped line will be

X'=x+ uAx
Yi'=yi+udy
Xz' =X+ l.le'.K
¥2' =yt wmAy
P,(5, 120)
\ (100,100)
(10,10) N Py(80,7)

120 | Insights on Compuiter Graphics

(S ST N
1 —AX=—{80—-5)=_75 e Px
. Wi 5
2 Ax_________—_"'_“‘—_--—-—-—-________ (uy)
iy, 95
= -(80-5) = 100-5 L=
- T % (uz)
Le., p>0
3 e
aF Y1~ Yomm 110
==(7-120) =(120-10) ™1
—]l3 = “0 (uz}
ie,p>0
e B
ﬁy)Iww-—)fl i __20 20
=-113 =100-120 | 713 T3
o S .. (@)
Now,
U =max(0, rk)
& 20
max075 1) = 113
U; = min(l,r)
95 110, 110

III

min(l, 75 113 =113
X' =X+ u,Ax

_5+_2_0_
113 X 75= 1827

Yi'=yi+ uAy
20
=120 113 X (-113)= 100

X' =X+ wAx

110
5+“3x75~ 78

Two-Dimensional Transformations | 121

|- . u;= max(0,) = 0.105

| }'2‘ =y + usAy | } uy= min(U, 1) =0.947
110 _ 3
=120 +773 x (=113)=10 l_}_ ;,‘=x;+ll16x=6+0.105x54=11_57::12
P/(x, ") = P,'(18,27,100) " yi' =¥ T wmAy =100 + 0.105%(-94) = 90,025 = 90
P,'(x2y2) = P2'(78, 10) X' =X+ uAX =6+0.947x54 = 57,118 = 57
13. Use Liang Barsky line clipping algorithm to clip line ya' = y1 + UsAy =100 + 0.947x(~94) = 10,035 ~ 10
| starting from (6, 100) and ending at (60, 5) against the Required points are (12, 90) and (57, 10)
window having its lower left corner at (10, 10) and npger i s .
right corner at (90, 90). [2075 Ashwin] 14 Reflect the triangle ABC about the line 3x - 4y + 8 = 0 the
(6, 100) (9, 90) position vector of coordinate ABC as A(4, 1), B(S, 2) and
ol Cc4,3). [2075 Ashwin]
iy Solution:
704—
ek
s0—1~ * T
201 s
30— . 3x—-4y+8=0
201 6
10—+ < . E
— =1 g
; 10 20 30 40 50 60 70 B0 90
Solution: . 3
Clipping Window (Xmin, Yumia) = (10, 10) 2 D B
(X Vo) = (90, 90) ks 5 A
(x1, y1) = (6, 100) and (x5, y2) = (60, 5) 1ttt
Ax=%-x,=60—-6=54 1 2 3 4 5 6 7 B 9
Ay=yr-y=5-100=-95
K | pu qx ; QW Pe The arbitrary line about which the triangle ABC has to be
=qu/P
I i - =
0 [-Ax X~ Ko =6-10=—4 | 0.074(u)) B L
= -54(p<0) ie,y=3x+2
1| Ax=54 Xmax— X1 = 906 = 84 1.55(uy) 3
— m =
2 |-8Y=95 | Y1 Yuw=100-10=90 | 0.947(us) *
3 - ol c=2
Z1AY=95 | Yo y1=90-100=-10 | 0.105(u)
e o TR |
W et ————
122 | Insights on Computer Graphics _ Two-Dimensional Transformations | 123

~

m -

9 =tan '(m)= tan 'S = 36.8698°

CM. = T'lR'luRhI{aT
1 0 ¢t 1 0 0
01 :yl =[0 1 —2‘
0 0 1
[cos@ sin® Ul [cos(36.87) sin(36.87) U‘

T=

Rg=[—sin0 CDSG 0 —sm(3687) cos(36.87) 0
0 0 1
1 0
Rﬁ;:lﬂ -1 U]
0 0 1

cos(—8) sin(-6) 0

R (-9) =[—sin(-e) cos(—0) 0]
0 0 1
cos(—36.87) sin(—36.87) 0
=[—sin(—36.87) cos(—36.87) C

0
o 1] rs
= t, 0 1 2
0 0 1
—06 01[1 0 O
C.Ml 12“06 0.8 0“0 -1 G]
o o tJlo o ulo o 1
08 0.6 O0jf1 0 0
’-u.s 0.8 0“0 1 —2}
o o ulo 0o 1

el

—
e

124 | Insights on Computer Graphics

Three-Dimensional Transformations

—

Three Dimensional Graphics

Thre.e‘ dimensional graphics uses three dimensional
representations of geometric data. 3D adds the depth (z) dimension
in length (x) and breadth (y) dimension in 2D, 3D is more complex
than 2D because in 3D relatively more co-ordinate points are
needed, object boundaries can be constructed with various
combination of plane and curved surfaces, viewing direction,
position in space, orientation, projection consideration, visible
surface detections etc. matters in displaying the graphics.

y
4
¥
z
L X
> X
z
Right hand system Left hand system

41 Three-Dimensional Transformations

» Translation

» Rotation

e Scaling

» Reflection

e Shear

-Matrix used in 3d transformation is of order 4x4
homogeneous co-ordinate for 3D is. (x,v,21)

ensional Transformations | 125

Three-Dim

44

Translation/Shifting

In a 3D homogeneous co-ordinate representation, a poun
translated form position P(x.y,z) 10 position P'(x', y'. 7) with |
matrix operation

x' 1 0 0 ¢ |x
X:¥,.2)
y' 0 1 [
4 0 1 ¢,]z
L 0 11 ii)
X
OR Fig 4.1: Translation of a point
Pr=T.P
=%t
i Rl
Z=z+t,
. An object is translated in 3D by transforming each of the
defining points of the object.
. For an object represented as set of polygon surfaces, wc
translate each vertex of each surface and redraw the polygon
facts in the new position
. A translation in the opposite direction in obtained by jii)

negative the translation distance t,, t,, and t,

Rotation

. We must define an axis of rotation and amount of angular
rotation to generate rotation transf ormation

. Unlike 2D application, where all transformations are carried

out in the xy-plane, a 3D rotation can be specified around

any line in space. 3

Co-ordinate Axes Rotations:
i) Rotation about z- axis or (z axis rotation)

x'= xcos— ysin®
<

o~

y'= xsin@ + ycos8

z=2Z

Fig 4.2 : Rotation
about z-axis

In matrix form,

x' cosB

—sinf
B sinf cosf

4 I
z 0 0
1

o - o o
- - o o
—_— kN e e

0 0

ie. P=R/(6).P

Rotation about x —axis

y':ycosﬂ—zsinﬂ

Z' = ysin@+zcosd

X =x

In matrix form, =

x' 1 0 0

y' [_[0 cos® —sin®

1 0 sin® cos@
0 -0 0

e

- o o
—_ N

z
1

P' =R,(0).P
Rotation about y —axis

Fig 4.3 : Rotation
about x-axis

z'=zcos®—xsind
x' =zsin®+ xcosO
Yy =Yy

In matrix form

]

x cosf
sy | 0
2| |-sin@
1 0

sind

cosé z

Fig 4.4 : Rotation
about y-axis

o O - o
_ N e W

P'=R,(0).P .
An inverse rotation matrix is formed by replacing the
rotation angle 6 by -0

126 | Insights on Computer Graphics

Three-Dimensional Transformations | 127

———

General 3D rotations

i. About an axis that is parallel to one of the co-ordin,;,

axes.

a. Translate the object s
with parallel co-ordinate axes.

b. Perform the specified rotation about that axis.

Translate the object so that the window axis Is moy

back to its original position.

o that the rotation axis coinei,.

D

X

z
(b) Translate rotation axis onto x-axis

Position of object

(a) Original position of object

Y

B~ X

(c) Rotate object through (d) Translate rotation axis to
angle a original position

z

Figure 4.5: Rotation about an axis that is parallel to one of the co-
ordinate axes.

ii) Rotation about an arbitrary axis

a. Translate the object so that the rotation axis through the
origin

b. Rotate the object so that the axis of rotation coincides
with one of the co-ordinate axis.

¢. Perform the specified rotation about that co-ordinate axis.

d. Apply inverse rotations to bring the rotation axis back to
its original orientation.

128 | Insights on Computer Graphics

s 4 :
c. Apply ¢ Inverse translation to bring th i i
back to its original Pposition, ¥ T Totation axis

(a) Initial position (b) Translate P, to origin

¥y
| Y 2
Py
z
d) Rotate the object (e) Rotate the axis .
around the z-axis to original 0 ﬁansicf;.‘z‘ the POl
avienlation axis to original position

Figure 4.6: Rotation about an arbitrary axis

A rotation axis can be defined with two co-ordinate positions
or with one conrdmate point and direction angles (or
direction cosines) between the rotation axis and two of the
co-ordinate axes. :

Assume that the rotation axis is defined by two points and
that the direction of rotation is to be counterclockwise when
looking along the axis from P to Py.

An axis vector is then defined by the two points as
V =P,—P= (X %1, Yz ¥1. 22~ ~21)

An unit vector u is then defined along the rotation axis as

ll*=(a,b,c)

M

Three-Dimensional Transformations | 123

b

where the components a, b and ¢ of unit vector u ar _
p % € th v, xV, =u|V,|V2'smB o
direction cosines for the rotation axis a = & <B<q
M VieV2 = Vi Vi, + ViV, ViV,
z
= Z,-Z
& Yth B 2|v1 | uoouou,
V] sz = le Vly Vlz
VZ:(sz sz

If the rotation is to be in the opposite direction (clockyg,

when viewing from P, to Py), then we would reverse We establish the transf
Stormation matrix for rotati
on around

vector v and unit vector u so that they point from P; to . b e
] ini 5
| DO = fet: axis by determining the values for the sine and cosine
010 - of the rotation angle necessary to get u into the x plane
; s - o =N . . § .
By moving point P, to the origin. T = 60 % j[‘lus rotation angle is the z.u"lg[e between the projection by u
000 1| in the yz plane and the positive z axis.

Now, we need the transformation that will put the rotatioy
axis on the z axis.

we can do this in two steps.
First rotate about the x-axis to transform vector u into the x;

plane.
. Then swing u around to the z axis using y—axis rotation,
Z
Figure 4.8 Rotation of u around the x axis into the xz plane is
accomplished by rotating u’
If we designate the projection of u in yz plane as vector u'
(0, b, c) then cosine of the rotation angle o can be
determined from the dot product of u' and the unit vector uz
along z axis
|
(a) Translation {b} Rotation about x- (¢) Rotation about v- cosoL = ﬁﬁ = % whered = b2 #: 02
u'fiu, .

axis axis
Similarly, u'Xu, = u,lu"fu,]sina and the Cartesian form for

Figure 4.7 Unit vector u is translation and rotation
the cross product given us uu, =u,.b

Since rotation calculations involve sine and cosine functions.
we can use standard vector operations to obtain elements of "]— 1
the two rotation matrices.

|-

V.V, =[V,|V,|cos® 0<0<n
nsformations | 131

Three-Dimensional Tra

130 | Insights on Computer Graphics

dsina=b

sinoL = —
d

Now that we have determined the values of sin & and cos

1 0 0o 0
0 ¢/d ~bfd 0

R(0) = of /c
: 0 b/d ¢/d O
0 0 0 1

This matrix rotates unit vector u about the X-axis into xs
plane.

Now, swing the unit vector in xz plane, counterclockwisc

around the y axis onto the positive z axis
-

ra
Figure 4.9 Rotation of unit vector u” about y axis

The vector labeled u" has the value a for its x component
since rotation about the x-axis leaves the x-component
unchanged. Its z component is d (the magnitude of u').
Because vector u' has been rotated onto the z axis. And the y
component of u" is 0 because now it lies in xz plane

casﬁ:W:d

Since Ju,|=[u'{=1, comparing the co-ordinate independent
form of the cross product.

whu, = o, sin

132 | Insights on Computer Graphics

R

with the Cartesian form
' xu, =ll),.(—a}

Wc ﬁnd 'hat Si]'lﬂ =-3

d 0 -a 0
) 01 0 o0
Re®=1, 0 a o
00 0 1
The specified rotation angle 8 can be applied as a rotation
about the z axis. .
cosf? —-sin@ 0 0
sinf cosé 0 0
RO= 6 1B
-0 0 01

To complete the required rotation about the given axis, we
need to transform the rotation axis back to its original
position.

R@®)=T'R, (@R, (BR,(OR, PR, ()T
A somewhat quicker but perhaps less intuitive, method for
obtaining the composite rotation matrix R, (8).R (@) is to

take advantage of the form of the composite matrix for any
sequence of three dimensional rotations.

n, n f3 0

[. r, 0O
R=|™0 2 ™

om0

0 0 01

The upper left 3x3 sub matrix of this matrix is orthogonal.
This means row (or columns) of this sub-matrix form a set of
orthogonal unit vectors that are rotated by matrix R onto the
X y, and z axes rcspectivcly.

Three-Dimensional Transformations | 133

pe——

) 6T}

M 1 0
1
Ra | _ 0 R 2 | :
R ol’ 0 A
1 1

0
an:{}
1
| 1

f3 "3

1 1

We can consider a local co-ordinate system defined by the

rotation axis and simply form a matrix whose columns are

the local unit co-ordinate vectors. Assume rotation axis is
not parallel to any co-ordinate axis.

i uxl'l'l.

" o]

“zl=n, ll' s “l x=“ly“fz
And if we express element of local unit vectors for rotation
axis as

]
w, = (U, Wy,0' x3), Wy = (U'y,u' y2 Wy3)

', =(u' 21,0 22,u' z3)then the required composite matrix

equal to the product Ry(B).R«(e) is
u' x u' = u'x3 0

R= wa u, up 0
u' u' 2 u' - | 0

zl

0 0 0 1

L Perform rotation of a line (10, 10, 10), (20, 20,15) about Y-
axis in clock wise direction by 90 degree. Explain about
vector display.? [2071 Shrawan]

Solution:
Rotation about y-axis in clock wise direction

7' =z cos + x sinB y

p2(20,20,15)

x'= -z sinb + x cosb
Y=y

8= 900 pl(lostaslo)

134 | Insights on Computer Graphics

In matrix form,

cosB

[0 —sin® o
y|_| 0 1 0 oy
z sin®@ 0 cos® ¢,
K 0o 0 0 1l
[x]' cos90 0 -sin9 010
W 0 1 0 ol1o
zl' “|sin90 0 cos90 010
|1 0 0 0 1B
0 0 -1 0]10] [-10
{01 0 ofiwof |10
"1t 0 0 010 2 10
0 0 0 1]1 1
so, (xi';y1,21") = (=10, 10,10)
2] [o 0 -1 of20] [-15
y2(|01 0 0f20] |20
22| [1 0 0 ofis| |20
1 | oo o 1f1] [1

s0, (Xz'y222) = (=15, 20,20)
2. Write rotation matrix in clockwise direction with respect to
x-axis, y-axis and z-axis, Reflect the object (0; 0, 0), (2, 3,
0) and (5, 0, 4) about the plane y = 4. [2071 Chaitra]
Solution:
(Refer the Theory)
Steps to reflect the object.
i) Translate the plane so that the plane coincides with the
xz plane
ii) Perform the xz reflection
iii) Translate the object s0 that reflection plane is
back to its original position.

moved

Three-Dimensional Transformations | 135

= =]
o e QO -
o L
o —~ O Q
-0 O o
o o o -
o o - o
o -0 o
|
'

:CM.X

=

(¥
- W
e

Y3 =CM.x

- O LA
(]

Scaling
X’ =X.5
Y Y8y
z'=125;
In matrix form,

x' 1 0 0 0fx

y' 0 cosf —sin® Ofy

o | |0 sin® cos® 0]z
oo o 1f1f
Scaling about fixed point

i. Translate the fixed point to the origin.

ii. Scale the object relation to the co-ordinate origin.

jii. Translate the fixed point back to its original.

136 | Insights on Computer Graphics

(xf, v[. zf)
(xL Yﬂzﬁ

CM.=T'ST.

=T(Xs, Y5, Z0). S(sy, 5y, 5,). T(xf, i, -2f)
s 0 0 (-5,)X,

5, 0 “_5,-)y

0 5. (lI-s,)z,

0 0 1

0
0
0

Reflection

A 3D reflection can be performed relative to a selected
‘reflection axis' or with respect to a selected 'reflected plane',

Reflection relative to a given axis is equivalent to 180°
rotations about that axis.

Reflection with respect to a plane is equivalent to 180°
rotations in three dimensional space.

When the reflection plane is a co-ordinate plane (either xy,
xz or yz) we can think of the transformation as a conversion
between left handed and right handed systems.

For example,
If an object is reflected about xy plane, it 51mp1y changes

the sign of z values keeping the sign of x and y values
same. So

Reflection about z-axis or xy plane .

P'=Rf,P

x! 0 0
y[[o1 0

- 2 _ 0 -1

1 0 :

(= — I —
[— =T]
— N

Three-Dimensional Transformations | 137

ne .
Reflection about x-axis or yz pla !_ X 1 0 0 0oy
P' =Ry P 'I y . S’I_\. 1 0 0 y
(‘..] '—_l 0 0 l]"x“ ; z Sh__ 0 1 0 Zz
;\‘ o 1o oly ' 1 0 0 0 1f1
[1]o 01 0]z '=shy, .P e
[y | Lo oo 1)1 ot
iyt ks y‘=y+shy.x _Z'= Z+$h:.x
Reflection about y-axis or xz plane Sﬂhezﬂni :'i;)“ direction keeping y co-ordinate same
;rx' m o o ofx] (e s
|y 0 -1 0 0fy x 1 sh, 0 0Ox
p17lo 0 1 o}z ol e
b oo o]y 2| [o sh, 1 0]z
B IR
. Shearing
; « Shearing transformation are used to modify shape of the p'=sha P Y
! object. x'= x+sh.y 2= z+sh,.y
d In space, one can push in z co-ordinate axis direction, 1. Find the new coordinates of a unit cube 90° rotated about
LY keeping the third axis fixed. an axis defined by its end points A(2, 1, 0) and B(3, 3, 1).
) Shearing in x and y direction keeping z co-ordinate same Solution:
_ (ah:g!-lm) v*Pz—Pu=(xz—xl,y:—yl,22—z|)
: _'-. Fx Mo sh, 0fx _Xp—Xy _ b=!‘z—)'1=__g_
; y | |01 sh, ofy v ‘E M6
| Lyl loo 1 of:z W
tz 2272y 5
c=2T-— d=\tF+ =1 [Z
hjloo ol M6 8
, x'=x+sh.z ' : P(3,3,1)
Y =x+shyz /
! e | 1,1,0
¥ | Z'—Z | {) P1(2v1|0)
It alters the x and y co-ordinates values by an amount that is
; proportional to the z axis while lesmgzco—ordmale same (1,0,0)
.\ asp Shr.rp . 3
Shearing in yz direction keeping x co-ordinate same
(along x-axis) ‘
138 | Insights on Computer Graphics
Three-Dimensional Transformations | 139

R(6) = T"Rx"(a}Ry"{B).Rz(e).Ry(B)-Rx(_a)_-T

i o0 2]t © o 0][d 0 a O
o1 0 L||]o cid bld D 0 1 01
=lo 0 1 o||0 -b/d c/d 0f|-a O 40
0o 00 1j0 O 0o 1j[0o 0 0 1]
feos90 -sin% 0 0][d 0 -a o1 © 0o 0l
«n90 cos90 0 0f[0 1 0 110 ctd -bld 0|
0 0 1 0lla 0 4 0][0 hid cld 0]
| 0 ODIJO{)OI__{}O 0 1
Mmoo -2 '
010 -1
001 0
leoc- 1
3D viewing

[n 2D graphics application, viewing operations transfcr

position from the world coordinate plane to pixel position in the
plane of the output device.

But in 3D graphics application, we have (o consider spatiil
position (i.e., an object can be viewed from the front, from

above or from the back) or we could generate a view of what |

we would see if we were standing in the middle of a group
of objects or inside a single object, such as buildings.
Additionally, 3D descriptions of object must be projected
onto the flat viewing surface of the output device.

And the clipping boundaries now enclose a volume of space.
whose shape depends on the type of projection we select.

Viewing pipeline

MC Modeling wcC
—*{Transformation

Projection
Transformation

Viewing vC
T'ransformation

h 4
i J

Projection
coordinates

- Workstation Device
”| Transformation ——® (oordinates

Figure 4.10 General three-dimensional transformation pipeline, from

modeling co-ordinate to find device co-ordinates

140 | Insights on Computer Graphics

- specifying the observer viewing positi

3D viewing pipeline describes
: > PIF : € conversion of 3D obj
into 2D projection or mapping by using some processe;) =

T.h : ste.ps for computer generation of a view of a three
dimensional scene are analogous to the process i i
\aking a photograph. s involved in
To tlake a snapshot, we first need to position the camera at a
particular point in space, then need to decide on the camera
orientation. (i.e., which way do we point the camera and.
how should we rotate it around the line of sight to set the up
direction for the picture). Finally, when we snap the shutter.
the scene is cropped to the size of the shutter, the scene is‘
cropped to the size of the 'window' (aperture) of the camera
and light from the visible surface is projected.

Each model or object has its own dimension and coordinate
system. It is called modeling coordinate. Modeling
transformation is to take all the objects in a single scene by
using transformation such translation, rotation etc. To set
object is called modeling translation.

After modeling translation, the objects come to a scene or a
coordinate system is called world coordinate.

To set the camera on some position, angle or orientation is
called viewing transformation. From viewing transformation
we get viewing coordinate.

Projection transformation is to adjust focus, zoom in, zoom

out etc. Projection transformation ~creates projection
coordinates.

Workstation or viewport translation is just like to click the
button to save the image in the device.

Once the scene has been modeled, world coordinate
positions are converted to viewing co-ordinate.

The VC system is used in graphics system as a reference for
on and the position of

the projection plane analogous to camera filin plane.

Three-Dimensional Transformations | 141

B

. Projection operations are performed to convert V¢
description of a scene 10 co-ordinate positions on th,
projection plane.

. The projection plane is then mapped to output device.

Viewing co-ordinates:
Views of a scene can be generated by given spatial positioy,
(i.e., various distances), angle (i.c., angle with z, axis), orientation,
aperture (i.e., ‘window') size of the camera.
Generating a view of an object in three dimensions is simila;
to photographing the object
Specifying the view plane
. We choose a particular view for a scene by first establishing
the viewing co-ordinate system also called view reference
co-ordinate system
. A view plane or projection plane is then set up perpendicular
to the viewing z, axis.
. WC positions in the scene are transformed to VC then VC
are projected onto the view plane.

Establishing the VC reference frame

. First, pick a WC position called view reference point, the
origin of our viewing co-ordinate system.

. The view reference point is often chosen to be close to or on
the surface of some object in a scene. But it may be center of
object or group object. '

. Next, the positive direction for the viewing z, axis and the
orientation of the view plane is selected by specifying the
view plane normal vector N

e We choose a WC position and this point establishes the
direction for N relative either to the world origin or to the
viewing co-ordinate origin. Establish direction of N using
the selected co-ordinate position as a look at point relative 10
view reference point (view coordinate origin).

142. | Insights on Computer Graphics

Finally, we choose the up directj

specifying a vector V., called viewip on for the view by

This vector is used to establish the tr:%t(?r_ .
. e direction for the yv
Yoo Yu
Niew phoxe view plane
[
Xw
Iy (a) ") -

(b)

Figure 4.10: Orientation of the view plane for specified normal vector
co-ordinates relative to the world origin position (1,0,0) erients

the view plane as in (a) and (1,0,1) gives the orientation in (b)

Zy

Fig. 4.12: Orientation of the
view plane for a specified
look-at point P, relative ta

the viewing - co-ordinate
origin py

Fig. 4.11: specifying the view-up
vector with a twist angle 6t Yo

. Vector V can be defined as a world co-ordinates origin Po.

« Vector V can be defined as a world co-ordinate vector or in some
packages it is specified with twist angle 6,about the z, axis.

» For general orientation of the normal vector, it can be
difficult (or time consuming) to determine the direction for
V that is precisely perpendicular to N.

Three-Dimensional Transformations | 143

Adjusting V

Figure 4.13: Adjusting the input position of the view-up vector Vo q
position perpendicular to the normal vector N

. Viewing procedures typically adjust the user-defineq |

orientation of vector V,

So that v is projected into a plane that is perpendicular to the

normal vector.

. We choose the view up vector V to be in any convenien;
direction, as long as it is not parallel to N

. Using vector N and V, the graphics package can compute 3
third vector U perpendicular to both N and V. to define the
-direction for the X, axis.

« - Then the direction of V can be adjusted so that it i
perpendicular to both N and V to establish the viewing y,
direction

. In transformation from world to viewing co-ordinates, these
computations are conveniently carried J out with umit axis
vector.

View plane

. The window is defined in this plane.

. The origin of this plane which defines the position of the ey¢
or camera is called the view reference point
e=(ex ey)

. A unit vector to this plane is the view plane normal N.

. Another vector called the view up vector. V., is a unit vector
perpendicular to N.

View coordinate system

+ Usually left-handed system called the uvn system

144 | Insights on Computer Graphics

v, the y-axis of the vyiey

perpendicular projection v “0-Ordinates

up Of On the view pl

2] an
u, the X axis of the view co-ordinate is _‘p -
and N ice., U=VxN 5

positive u and v are to the ri
. ght and up-directi
point of view. up-direction from eye's

system is

orthogonal to V

. N is [he.z-a:'ffls Of the view co-ordinate, It increases in
positive direction with depth of a point from the 5
€.

yiewing co-ordinate Parameters

We call the viewing co-ordinate frame uvn, where u. v and
p are three orthogonal vectors. '

Let, Py be the view co-ordinate origin.

« P,.¢be the look at point in the scene.

« N be the vector from pesto Py

. Then n is the unit vector in the direction of N.

« Let v be the unit vector in the view up direction N.

. Vector u is perpendicular to u and n, where U= VxN

Usually, the user specifies Py and prg, and the view up
vector v

« An eye defined within this system.
Usually, user doesn't give precise V exactly perpendicular to N.

Therefore, we use the following method to find u, v and n

N v
n=—
IN|
Yxn
n=—— u
M
v=nxu A

Leta = (a, ay, ;) be look-at-point

For perspective VIEWS, the view plane normal as 2 unit
vector from eye to a look-at point is given by

Three-Dimensional Transformations | 145

N=- (a, — €., ~Cy.8z ~C2)
a—e 2

SpeEe - -
a-e =8, —e) +(a, —€,) +(3, ~€;)

The view up vector is the tilt(rotation) of the head or cam;
For parallel views it is con
normal as determining the direction of projection.

Transformation from world to viewing coordinates

Suppose that the viewing co-ordinates are specified in woi
co-ordinates. We need to transform each vertex specified in worl

co-ordinates to view co-ordinates.

| Translate viewing co-ordinate origin 10 world co-ordinat;.
origin,

Apply rotation to align u, v and n with the world x, y and

[

axes.
Transformation matrices:

Translation

If the view reference point is specified at world position (x .
vy, Z) this point is translated to world origin with the matri:

transformation.

"I 00 =%

010 -y

001 -z

000 1
Rotation

The composite rotation matrix for viewing transformation IS
then

(0 My 0y 0

146 | Insights on Computer Graphics

venient to think of the view plu;

Wther app roach,

An object in world co-ordinate gp,
7) can be expressed in t pace, whose vertices are (x
Ys erm of view co-ordinates (u,v n)

Translate the view reference point e to the origin
Rotate about tl_1e _world co-ordinates of axis to br;n the vi
co-ordinate axis into the yz plane of world co-ordir?ale -
Rotate about the world co-ordinates z axi i
Xis t]

Ry o align the axis
Reflect relative to Xy - plane, revising sign of each z co-
ordinate to change into a left handed coordinate system
The viewing transformation are V=T.R,.R, R, R;

X Z.

Projection

Projection can be defined as a mapping of point p(x, y, z)
onto its image P'(X', ¥, Z) in the projection plane or view plane,
which constitutes the display surface

The mapping is determined by a projection line called the
projector that passes through p and intersects the view plane. The
intersection point is P'.

Two basic methods

i. Parallel projection

ii. Perspective projection
Parallel projections:

Co-ordinate positions are transformed to the view plane
along parallel lines.

Figure 4.14: Parallel projection of an object to the view plane

Three-DimensInnaltransfomations | 147

L —————————

Parallel projection preserves relative proportions ol ol
and this method is used in drafting to produce scale drawiy,,
three dimensional objects.

Accurate views of the various sides of an object are obiy,,
with a parallel projection. But this does r_mt gilvc us a reglpy,
representation of the appearance of a three dimensional objegy
Perspective projection:

Object positions are transformed to the view plane ;)
lines that converge to a point called projection reference poy
center of projection).

The projected view of an object is determined by caleul,,
the intersection of the projection plane with the view planc.

View plane

Figure 4.15: Perspective projection of an object to view planc
Perspective projection produces realistic views but docs nat
preserve relative proportions.

Projection of distant objects are smaller than the projection
of objects of the same size that are closer to the view planc.

Figure 4.16: Perspective projection of equa- sized objects at differc!!
distances from the view plane

_—
148 | Insights on Computer Graphics

B

parallel projections:

We can specify a paralle|

; e Projection wi .
ihat denies the direction for fhe Jection with a projection vector

projection line,
Orthographic parallel Projection:

The projection is perpendicular to the view plane
Oblique parallel projection:

The projection is not perpendicular to the view plane,

a. Orthographic b. Oblique

Figure 4.17: Orientation of the projection vector V, to produce an
arthographic projection (a) and an oblique projection (b)

. Orthographic projections are used to produce elevation
(front, side, real projections) and plan view (top projection)

. Used in engineering and architectural drawings.

. ‘We can also form orthographic projections that display more
than one face of an object such views are called axonometric

~ orthographic projections.

. Most generally used axonometric projection is the isometric
projection.

. We generate isometric projection by aligning the projection
plane so that it intersects each co-ordinate axis in which the
object is defined (principal axes) at the same distance from
the origin.

. If view plane is placed at position zy alﬂﬂg_‘he zv axis, then
any point (x, y, z) in viewing co-ordinates is transformed to

projection co-ordinate as, xp = X.Yp =Y

Three-Dimensional Transformations | 149

e —————

Where the original z co-ordinate value is preserved for f,,
depth information needed in visible surface detection procedure,

Oblique projection

. An oblique projection is obtained by projecting point along
parallel lines that are not perpendicular to the projecti,
plane.

. Some application packages define an obligate projectio,

vector with two angles o and §.

(x p, ¥p)
trg =g .

Z,

Figure 4.18: Oblique projection of coordinate position (x, y, z) to
position (X, y) on the view plane

. Point (x, y, z) is projected to position (xp, yp) an the view
plane
. (X. y) is the orthographic projection co-ordinates of (x, y, z)

Oblique projection line from (x, y, z) to (xp, yp) makes an
angle ocwith the line on the projection plane that joins (xp.
yp) and (X, y)

. This line of length L, is at an angle @ with the horizontal
direction in the projection plane

then, xp = x + Lcos®

yp =y + Lsin@®
But, Tane = =
L =.l..m“— ZL1

150 | Insights on Computer Graphics

Now, I

xp =X+ zLlcosp
yp =¥ +2L1sin®

Thenm, the transformation matrix

o for i
projection onto the XYy Plane becam;:mducmg any paralle]

1 0 Lcosp

_10 1 L;sing
Miarattel 00]

00 0

- O O

An or the graphic projection is obtained when L, = 0 (which
occurs at a projection angle a = 90)

Oblique projections are generated with non zero values for
L

Projection matrix for parallel projection is similar to that of a
z axis shear matrix

In fact, the effect of this projection matrix is to shear planes
of constant Z and project them onto view plane

The x and y co-ordinate values within each plane of constant
z are shifted by an amount proportional to the z value of the

plane so that angles, distances and parallel lines in the plane
are projected accurately.

Perspective projection

g

Suppose that cop is at z,, along z, axié, and view plane is at

®y,2) <o
T (.rgo,_::p, Zup)

lzo 7
view plane
Figure 4.19: Perspective pm;ectwn of a point P with
coordinates (x, y, z) to position (X yp) on the view plane

Three-Dimensional Transformations | 151

We can write equations describing co-ordinate positiy,,.
along the perspective projection line as

X'=X-Xu.......(1)

Y=Y YU (11)
2 =Z-(Z-Zpph oeivnen (11i)
Where u varies from 0 to |
Whenu =0,

X'=x

Y=y

7' = z, at original position
Whenu =1,

x=0

y'=0

2' = 7., at the projection reference point
On the view plane Z' = z,,, so equation (iii) becomes z,, ~ /-

(Z-Zpp U
¥4 =2 o
oru =—= v
zpl’p =3
also. x' = x, and ' = y,. so equation(i) and (ii) becomes
(Zyp =2)
X, =X= _‘7—
: (Zprp —2)
_ o (g 22 +2)
(2o —2)
o (o =)
'..2_:!1: —z)
(d,)
Ry R vsiievad] (v)
Zop =2)

Where d, = z-z.,,, is the difference between COP and vicw

plane distances

also,
V.= y- (g —2)
-F 7 -',ZP"P -z)
= -’z,..p—z—z\f+z_|
: (Zprp —2)
=y x Zzp ~"w)
(Zprp =2)
152 | Insights on Computer Graphics ==

R

(dp)

.. 1
%=y= o 2y e V)
And Zp = Zup v irvsennis (vii)
using equation (v), (vi) and (vii), we form o
e rix
p| |9/ -2) 0 0 o7«

yl'. 4 0 dpf[zpm-z) 0 0 y

% 0 0 0 2,1z
1)L 0 0 0 1 |1

] [1 0 0 0 %

Yo|_ 01 ¢ Y Y

z, | [0 0 ~zp/dy z,(2,,/d)]2
][00 -vd oz |
whereh=£

dp

X -
%»=h*¥ " h

and original z co-ordinate value would be retained for visible
surface and other depth processing

Special cases -
i When z\,p; 0), view plane passes through origin
= P = 3
T X - alepy)
. (dp) 1
. x = x
YV) Y (1———-’)
prp

When z,,, = o, reference point at origin
1

Z
Xp=xx—L=xx

(_z/zw]

z
.
B=yx-, yx(mw)

Vanishing point

A set of parallel lines that are not parallel to view plane are
projected as converging lines that appear to converge at a
point called vanishing point.

A set of parallel lines that are parallel to view plane are
projected as parallel lines.

Three-Dimensional Transformations | 153

i one st of parallel hnes form mwore thin o,

pomnt 1n the seene

T v amshing pont ts tor realistic representation
\ amishing

panint

Figure 4.20 (a): Perspecrive Views and vamishing point

Principal vanishing point
| ishing pownts are formed by the apparey
son of lines parallel to one of the three principal .

potnt for any set of lines that are paralle| |
incipal axes of an object is referred to uy

principal vanishing point.

ber of principal axes Intersected by the view plane.
g Laxis
vanishing

£
Figure 4.20 (b): Perspective views and z axis vanishing point

JZ-axis
X-axis 4 vanishing

vanishing

Figure 4.20 (c): Two-point perspective views and principal vanishing
point

154 | Insights on Computer Graphics

We can control the numpe

er of pringj ichi
or ; pal vanig
0;:;; rfwyoas cﬂteteleih the orientation of project?;:g]|:umt d
: » WO or three point perspective prn}egtmn:sand
Sets of parallel lines on the same plane | ad ‘
vanishing points. The line jg called the hor; z:n flﬁhcu“mear
Projectiong olthe plane.
i /\)
(Rays mPTnﬂli[egl‘;bJeﬂ are {(Rays from u:cgg]:ft S
Orthographic Oblique | One point
(Projector (Projector not (One principal
perpendicular to vanishing point)
view plane) perpendicular to
view plane) | Two point
g : - (Twao principal
Multi view (view Aot Cavalier ok ;
metri ; int
pla?nebpua.llel to (‘V.P. ot paralle] (30° or 45°) ; g point)
principal plane) 1o PP.) I_ The -
(Front, top, bottom, ; Cabinet ee point
lef, right) (63.4°) (Three principal
‘ : vanishing point)
“ Isometric Dimetric Trimetric
a=f=y a=B#y azfry
azf=y
a=yzp

Three-Dimensional Transformations | 155

List down the steps for rotating a 3D object by Y0° |,

counter clockwise direction about an axis joining ey,

points (1, 2, 3) and (10, 20, 30). Also derive the fing,

transformation matrix. [2076 Ashwin Baf,,

Steps:

i. Translate (1, 2, 3) to origin so that the rotation axis pass.
through the origin.

ii. Rotate the line so that the line coincides with one ol il
axes, say 2 axis.

iii. Rotate the object about that co-ordinate axis by 907 i,
counter clockwise direction.

iv. Apply the inverse of step (ii) i.e. inverse rotation to briny
the rotation axis back to its original orientation,

v. Apply the inverse of step (i) i.c. inverse translation io
bring the rotation axis back to its original position.
For step (ii) i.e. for coinciding the arbitrary axis with any
co-ordinate axis, the rotations are needed about other two
axes.

Direction cosines of the given line is

[v] = [(x1— o) (¥1— ¥o) (21— Z0)]

e L‘]:[!XJ—XUHEI' fu.'_lle-?n} }
e (x; — x0)" + (y1—yo)" T (21— 20)

. a. First rotate about the x ayjg

o XiXo_ 10-1 G {
T M A8 27 33.67 i

pom ot 16 |
YTy T 33.67 '

Tl 1) |
T v 33.67

To calculate the angles of rotation about x and y axes we use
the direction cosines.

To put the line or rotation axis on the 7z axis we have 10
follow two steps

156 | Insights on Computer Graphics

"—

to '
x z plane. transform vector u into the

b. The swing u around to the z axis usi
in

& 4 axis rotation,

sinf =—,

The complete the sequence of operations can be
summarized as

T = [T [R()] ' [Ry(B)]” [RAOIR, (B[R)][T,]

1 0 0 -]
1 .
= 0 -2
001 -3
000 1
1 0 0 0
0 cosa. -sina 0
R(a)] = ,
) 0 sinoe cosa 0O
0 0 0 1

Three-Dimensional Transformations | 157

cosp 0 sinfp O
0 @
RB) = .
(Ry(B] ~sinp 0 cosp 0O
L 0 0 0 |
 cos90® -sin90° 0 0
RE sin90® cos%0® 0 0
[R,B)] =
i) 0 0 10
L 0 0 01
[cosp O —sinfi 0
, 0 1 0 |
R.(B)] = .
R.(B sinfi 0 cosp 0
L 0 0 0 |
[0 h 0
) |0 cosw sing 0
Rilay) =}
| 0 -sine cos 0
L0 0 0 |
r1no01l =
|
o H 1 0 2|
T. g |
A p J I J
Lonoo
2. Develop the matrix to transform an object from three
dimensional world coordinate to viewing coordinate system
A unit length cube with diagonal passing through w, 0,0
and (2, 2, 2) is shared with respect to zx - plune with share
constants = 3 in both directions. Obtain the finul
coordinates of the cube after shearing. [2075 Ashre
Solution:
Shearing with respect to zx - plane
£ g she 0 0«
s O L & 0l
7 } shz |z
1 6 0 0 1}
sh,~ sh, =3

158 | Insights on Computer Graphics

02,
020 220
(0,2,2)
(2,0,0)
/ (0,0,2)
1 3 0 0][2
o 1 0 oflo
A=lo 3 0o ollo
o 0 1 1ila

Similarly, we can calculate B, C', D', ', F', (¢, H'".

2 Obtain perspective projection co-ordinates for the pyramid
with vertices of base (15, 15,10), (20,20,10), (25,15,10),
(20,10,10) and apex (20,15,20) given that 7,,, <20 and z,, = .

Solution:
zop =20, 2 =0
x'=x-xu
y=y-yu
Z=z2—(Z-Zmpu
On the view plane, Z = z,;,. So,

Zp =2~ (Z~Zyp)u

2t 4

Zoe— 2

For the vertex (15,15,10),

o)

o)

u=

—

ﬁmMTmmMIm

= x(zm'p "Z'“P)
Lprp -z

_ 15(20—0)

20-10
=30
. _,,(_Zﬂ_f_?i)
Hpp =ik Zop — L
0—-10)
= 10-10(z5-15
=30
Zy = 0

Projected points is (X3, ¥1,27) = (30,10,0)
Similarly for P,(Xz, Y2.%2) = P,(20,20,10)

Yy, = 20 ()= 40

Zy = 0

Projected points is (X2, Y2,Z2) = (40,40, 0)
Similarly, for vertex (25, 15, 10}

Xp = 50
Y, = 30
Iy =0

Projected points isP; (X3, Y3, Z3) = (50, 30, 0)
for vertex (20, 10, 10)

2o —Z
= vp
X = x—x(zm —z)

= zo—zo(o_m
- 20—10)
-T
=
prp
0-10
- -0 (G0)
1 20-10
=20
Zy = 0
160 | Insights on Computer Graphics

e W
Curve Modeling

p—
51 Spline Representations -

511 Spline Curve and Spline Surface

Curve is the set of points that are joined continuously. Spli
is the smooth cl{.rve passing through the st of give:s Y._Splme
computer gra.phncs, Ccontinuous curve that are fﬂfmpg:ims‘,ﬁﬁ
polynomial pieces with certain boundary conditions are caljed
gpline curve or simply spline. A spline surface is combination of

spline curves or simply splines. A spline surface can be described
with two sets of orthogonal spline curves.

In drafting terminology, a spline is a flexible strip used to
pmduce a smooth curve through a designated set of points. Several
small weights are distributed along the length of the strip to hold

the position of spline curve as required. We can mathematically
describe such a curve with a piecewise cubic polynomial function
whose first and second derivatives are continuous across the
various curve sections. The general shape of a spline curve is
indicated by a set of coordinate positions called control points. A

spline curve is defined, modified, and manipulated with operations
on the control points.

Splines are used in graphics applications to design curve and
surface shapes, to digitize drawings for computer storage, and to
specify animation path for the objects or image. Typical CAD
applications for splines include the design of automobile bodies,
aircraft and spacecraft surfaces, and ship hulls.

The different types of spline curve are:
. Piecewise cubic spline
1. Hermite spline

ii. Cardinal spline

iii. Kochanek-Bartels spline

Curve Modeling | 161

2 Bezier spline

3 B-spline

4. Beta spline

5.1.2 Interpolation and Approximation Splines

We specify a spline curve by giving a set of coording,,,
positions, called control points, which indicates the general shap,
of curve. The control points are fitted with piecewise continy,,,
parametric polynomial function in one of the two ways.

o

Fig 3.1(a): A set of control points Fig 5.1(b):
interpolated with

A set of six POl

piecewise control points approximated i),

continuous po{momm! sections piecewise continuous polyvnoniql
sections

When polynomial sections are fitted so that the curve passcs
through each control point as in Figure a, the resulting curve is
said to interpolate the set of control points. Interpolation curves are
commonly used to digitize drawings or to specify animation paths,
and graphs of data trends of discrete set of data points.

When the polynomials are fitted to the general control point
path without necessarily passing through any control point, the
resulting curve is said to approximate the set of control points
(Figure b). Approximation curves are primary used as design tools
10 structure objects surfaces. It is used in drawing contour lines for
GIS (Geographical Information System) applications.

Convex hull

. The convex polygon boundary that encloses a set of control
pomts is t:alled the convex hull. Convex hulls provide a measure
for the deviation of a curve or surface from the region bounding the

162 | Insights on Computer Graphics

e OW the contro] ints wi

i points w
rratic osf:nllatlons. Als.o, the polygon region inside the co ithout
is useful in SOmME algorithms ag a clipp nvex hull

ing region.
p2
pl
p4
p3

Fig 5.2: Convex hull

Curve Continuity or Smoothness of Curve

There are two approaches which determine the smoothness
of curve or curve continuity. They are as follows:

i) Parametric continuity conditions(C)

ii) Geometric continuity conditions (G)
5.1.3 Parametric Continuity Conditions

Parametric continuity deals in parametric equations
associated to piecewise parametric polynomial curve not the shape
or appearance of the curve. We set parametric continuity by
matching the parametric derivatives of adjoining curve sections at
their common boundary. '

i Zero order parametric continuity (C"}:

'C” continuity means that two piece of curves are joined or
meet at same point. The two pieces of curve P and Q are in
zero order parametric continuity if P (t=1) = Q (t=0)

Curve Modeling | 163

ii. First order parametric continuity (C'):
Twao successive curve sections are in first order paray,, il
continuity if first parametric derivative of the coordj,,
function are equal at the joining point.
P(=1) =Q(=0)
Where P' and Q" are first order derivative.

iii. Second order parametric continuity (CH:
Two curve are in second order parametric continuity if
first and second derivatives of the two curve section,
same at the intersection point.

P (t=1) = Q"' (t=0)

Dth

(a) (b) ©

Figure 5.3: Piecewise construction of a curve by joining two curve
segments using different order of continuity (a) zero-order continuity onj,
{b) first-order continuity (¢} second-order continuity.

5.1.4 Geometric Continuity Conditions

Another method for joining two successive curve sections is
to specify conditions for geometric continuity. Geomelric
continuity refers to the way that a curve or surface looks. In this
case, we only require parametric derivatives of the two sections to
be proportional to each other at their common boundary instead of
equal to each other.

i Zero order geometric continuity (G°):

Zero-order geometric continuity (G continuity) is the same
as zero-order parametric continuity. That is, the two curves
sections must have the same coordinate position at the
boundary point.
P(t=1) = Q(t=0)

P and Q are two segments of curves.

164 | Insights on Computer Graphics

£ Samecoortome _oQ(1 = 1)
on Q
P(t=0) Pt=1
Qit=0)

First order geometric continuity (GY:
First-order geometric continuity (G! continuity) means that
the parametric first derivatives are proportional at the
intersection of two successive sections. If P and Q are two
piece of curves, then P’(t) and Q'(t) must have same
direction of tangent vector but not necessary to be the same
magnitude.

P Q
Qt=1)

P tangent
Q tangent

Pt=0) P(=1
Q(t=0)

Second order geometric continuity (G’):
Second-order geometric continuity (G* continuity) means
that both the first and second parametric derivatives of the
two curve sections are proportional at their boundary. Under
G? continuity, curvatures of two curve sections will match at
the joining position.
In general C1 continuity implies Gl continuity but Gl
continuity doesn’t imply C1 continuity.
C1 continuity doesn’t imply G1 continuity when segments
tangent vector are [0 0 0] at join point. In this case, the
tangent vectors are equal but there directions are different.

y(t) ¢

x(t)

Curve Modeling | 165

Three types of Curve
There are three types of curve. They are:

i Open curve:

> 5

ii. Closed curve:

O

iii. Crossing curve:

Bt

Representation of Curve

All objects are not flat but may have many bends gy
deviations. We have to compute all curves. We can represen,
by three mathematical function:

i) Explicit function
i) Implicit function

iii) Parametric function

Clrye

-

IExpllcil representation of curve:

In this method the dependent variable is given explicitly in
terms of the independent variable as;

y=1x)

€g,y=mx+c

y=5¢+2x+1

]’_’ explicit representation, for each single value of x, only ?
single value of y is computed

ii. Implicit representation of curve:
f;_““s method, dependent variable is not expressed in term
Some independent variables as;
166 | insights on Computer Graphics o

F(x,y)=0

€.8;

x2+y2-l=‘0

In implicit representation, for ea
multiple values of y is computeq.

If we convert implicit function to ex
more complex and will give differen

e.g y=tV1—x*

iii. Parametric representation of curve:

ch single value of x,

plicit function it wil] be
t values,

We cannot represent all curves in single equation in terms of
only x andy. Instead of defining y in terms of x (i.. y=f(x))

or x in terms of y (i.e x=h(y)); we define both x and y in
terms of a third variable in parametric form,

Curves having parametric form are called parametric curves,
X= fx(u)

y = f,(u) where u is parameter

similarly, parametric equation of line is;
x=(1-u)xp+tux

y=(1u)yotuy

u=0 u u=1
(xU! YU] (K, V) ‘ {lli Vl}
Parametric Curve

The parametric representation for curve is as follows:

x=x(t)
y=y® -
z=2z(t)

— ———

column vector of geometric constants call

cubic polynomial means the polynomials which reprc.

the curve with degree three.
The cubic polynomial that define a curve can be represey

as

Q(r) =[x(t) y(t) Z(t)]

(D) = at’ + b’ F et +dy

(Cubic polynomial function equation)
y(n=at +bt'+et+d,

2 =at’ +bt+et+d,

a, ay 4
s b by b
Qu=[t" tt 1].
Cx © €
d\ d)' d7
Q) =T.C.
C=M..G.

Where M is 4 X 4 basis matrix and G is a four elemeul

ed geometric vector.

2 Hermite Cubic Spline

i

Hermite spline curve is interpolation spline curve (curc

passes through control point)

avi

It uses cubic polynomial function (to make Hermite function

four point is necessary)

To make Hermite function it uses four point P;, Py, P\,
Where P, and P, are position vector and P, and P, arc
tangent vectors (first order derivative) which show direction

P_'I.

of the curve.

168

| Insights on Computer Graphics

t=0

Let Q) 18 the curve t€ *[0, 1]
= [x({t t 1)], te" . ‘

Q) gul() i)c p:r(a:ne::(-ic}i];y_ [0, 1] where all points satisfy

The general curve equation is,

pi)= at® + bt’ + ct +d where 0<t<1

So,

x®=at+ bt + eyt + d,

y)=at +hrettd

) =2t Tt et tds

a, a, a,
- 2 bx by, b
QW =It t t 1]. . o o
d d, 4
Qt =TC.
C =M.G.

M = basis matrix that provides blending function.

G = Geometric vector
Q(t) = T.MH.GH

=[¢ t 1]. M.Gu
Qdt) =Py(®=[0001]MuGu
t=0 -
Qut) =Pyt [1111]MuGn
t=1
Q) =Ry()=[3¢2t1 0]My.Gu
t=0

=[0010] Mx.G

Q) =R, (=[3210] Mu.Gu
Curve Modeling | 169

—

- where, P(t) is a point on the curye.
P, 0001 Expanding equation (i) yields,
P _ :} (l) i él MG P(t) = a313+32t2+31t+30 (i)
R, Separating three components of P(t), we haye
R, 3219 K(t) = ahta"\"a;,‘tz-#a“['l-aux
O 006 1775 B 3
E 3w B Y(t) = a!yt +a3ytz+alyt+aoy
= 4 : 3
MiSh=| 0 o0 1 o 5 2(t) = 8t +azzt2+a12t+a$.,.........‘...‘...‘.,..‘(iii)
3210 R,
2 21 1 -
i -3 3 2 -1
=
0 0 1 0 V—* X
1 0 0 1
P, z
P I -
G = 4 In order to solve equation (iii), twelve unknown coefficients
R, must be specified. From the known end point coordinates of each
Ry i segment, six of the twelve needed equations are obtained. The
Q(t) = TMyGy other six are found by using tangent vectors at the two ends of each
e P, segment.
QO =[11 3 20 P, The direction of the tangent vectors establishes the slopes
)=t ttel] 0 0 1 0 R, (direction cosines) of the curve at the end points. This procedure
! 1 0 0 0 R, for defining a cubic curve using ends points and tangent vector is
'1 . one form ite i i ic spline).
. - @3+)P, + (<22 + 30)P, + B3 g of Hermite interpolation (cubic spline)
(-)R, Each cubic curve segment is parameterized from 0 to 1 so
that known end point nd to the limit values of the
PiHo(t) + PaH (1) + Ry (1) + RyHy (1) e g i
Wh 3 Parametric variable t, that is, P(0) and P(1).
ere Ho(t), Hy(t), Hyt), Hiy(t) are Hermite blending ; ; T
\ fisetion: Substituting t =0 and t = 1 in equation (i), we have
| bt s e it e CPO)=2 e (iv)
A parametric cubic curve is defined as L i I be
3 g 1O find the tangent vectors, equations (if) most
P(=) ar ost<] 0 Herentiated with respect o
s R e i
i=0 : P(t) = 3&3t2 .o 2a;t + a;
170 | Insights on Computer Graphics = Curve Modeling | 171
e —— .) e

The tangent vectors at the two end points are o,
substituting t = 0 and t = | in the above equation.

P{0)=a, S— Y

PY{1)=3a:+ 2a. + o RSN 6 1

The values of aund ay can be determmed by oy
equations (iv), (v). (vi), and (vii)

ap= P(0)

a, = P'(0)

ay = =3P(0) + 3P(1) - 2P'(0) - P'(1)

ay = 2P(0Y = 2P(1) + POY + P'(1)

Substituting these values ol a, n cquation (1)

rearranging the terms yields

P(0)= (21" = 36+ P(0) + (-20+3C)P(1) + (=201 0P'(0)

(=P

The values of POy, P, POy, P are called geoncin
coclficients and represent the known veclor quantitics. [he
polynomial coefficients of these vector quantitics are commnionly
known as blending functions. By varying parameter ©in thes
blending functions from O to 1, several points on curve scpinenls
can be found.

5.3 Bezier Curves

i Bezier curve 1s approximate spline curve
-
/ \/
i Instead of end points and tangents, we have [our contil

points in the case of cubic Bezicr curve.

mi. It has Bemnstein polynomial function (Its own polynamit
function to provide continuity)

v Alleontrol points uses to make Bevier curve.

172 | Insights on Computer Graphics

Curve doesn't go out of polygon boung

ary (Convex hull

various CAD system
and many more Graphic

i Bezier splines are widely used ip
COREL DRAW packages
packages.

. As with splines, a Bezier curve can be specified with
boundary condiions Wil chustizing mai o i
blending function. For general Bezier curves, the ble

. . S ndin
function specification is most convenjent ¥

The Bezier curve was developed by the French engineer
Pierre Bezier for use in the design of Renault automobile bodies.
Bezier spline is highly useful and convenient for curve and surface
design. They are also easy to implement. For these reasons, Bezier
splines are widely available in various CAD systems, in general
graphics packages, and in assorted drawing and painting packages.

The control points are blended using Bernstein polynomials
to compute a set of position vectors P(u) which are then joined by
straight line segments to get the curve.

-2 1 4
4
1
Y 2°
*3 % -
! 3 .

Figure 5.4: Bezier curves generated four control points

Suppose we are given n+lcontrol-point positions: px = (X .
Yi 24) where k varies from0 to n. These points can be blenied 1o
Produce the position vector P(u), which describes the At .40
approximating Bezier polynomial function between Py and Pn.

Curve Modeling | 173

P(U) = Z’”“' BTy, (W) =ssoswinis (1) wherel=g<|
A=0
The Bezier blending functions BEZy, (u) are the 13y, L
pulynumiuls
BEZy, (1) = Cnoui(1-w)™* o (i)
where C(n,k) are the binomial coefficients and is given as

ki(n—k)!

Cink) =

Equation (i) represents a set of three parametric cqu,y,
for the individual curve coordinates,

P‘.{u)zz,rk BEZ, (1)

k=0

P_. ()= Z_I,'L.BEZ,,{_N (1)
k=0

"

P.()=) z,BEZ, ,(u)

=0
If we take n = 3, then number of control points= n+|
Then the above equations become
P.(u) = xp BEZ 5(u)+x,BEZ, 5(u)+x:BEZ; ;(u)+x:BEZ 5(u)
Py(u) = yo BEZ, 3(u)+y,BEZ, s(u)+y,BEZ, 5(u)+y:BEZ; «(u)
P,(u) = zy BEZ;5(u)+2,BEZ, s(u)+z,BEZ, s(u)+z:BEZ «(u)
where
BEZ5(u) = C(3,0) v’(1-u)’ = (1-u)*
BEZ, 5(u) = C(3,1) u'(1-u)* = 3u(1-u)’
BEZ, 5(u) = C(3,2)u’(1-u) = 3u’(1-u)
BEZ;5(u) = C(3,3)u’(1-u)’ = v’

Properties of Bezier curve:

L . ; :
Starting and ending control points lie on the curve.

P(0) =P,
P(1) =P,

T T e S '
174 | Insights on Computer Graphics o

They generally follow the shape of { I
which consists of the segments j he control polygon

. , oining the contro| points,
Multiple control points of same coordinate v

i i alues gj
weight to that point and as a result, the curve js pul%:{;e s
to that point. nearer

The curve lies within the convex hull of the region created

. . 1 1 :
by joining the control point. This is becausaz BEZ, =1
. k=0 ¥ '
2 2

3
Figure 5.5: Two dimensional Bezier curve

The slope at the beginning of the curve is along the line
joining the first two control points, and the slope at the end
of the curve is along the line joining the last two endpoints.

Collinear control points with same coordinate values

produce a point.

Control point do not have local control over the shape of the

curve.

The degree of the polynomial defining the curve segment is

one less than the number of defining control polygon poins.

For 4 control points the degree of polynomial is 3. i.e. cubic

Bezier curve.

Drawback:

* The degree of Bezier curve depends on number of control
points. '

* Bezier curve exhibit global control property IIleaIleS
moving a control point alters the shape of the whole
curve.

Curve Modeling | 175

Bezier surfaces

Two sets of orthogonal Bezier curves can be used 1o dp., i
an object surface by specifying by an input mesh of control o,
The parametric vector functions for the Bezier surface is forp
the Cartesian product of Bezier blending functions

Pluv)= ZZ;},‘ BEZ, (1)

k=0 =0

with p,. specifying the location of the (m+1) by ¢ |
control points.

54 B-spline Curve

B-spline curve was developed to overcome the limitation
demerits of bezier curve. Demerits of Bezier curve are as follow .

I Polynomial degree is decided by control points
If C.P. =35 then
P.D.=5-1=4
2. Blending function is non-zero for all parameter value oor

the entire curve. Due to this change in one vertex. chanzes
the entire curve and this eliminates the ability to produce s
local change within a curve.

Properties of B-spline curve
. B-spline approximate spline curve with local effect. In this
curve, each control point affects the shape of the curve onls

over range of parameter values where its associated basis
function is non-zero.,

B-spline curve made up of n+1 control point.

B-spline curve let us specify the order of basis (k) function

and the degree of the resulting curve is independent on the
no. of vertices.

% R . is possible ‘to change the degree of the resultin g cune
without changing the no. of control points.

5. B-spline can be used to define both open & close curves.

6. Curve generall

y follows the shape of defining polygon. If we
have order k = 4 then degree will be 3 P(k) :gxe‘ =

176 | Insights on Computer Graphics o

B

The curve line within the conyex hull of iy
po!ygoﬂ- z

” B-spline we segment out the whole
decided by the order (k). By formula 'n-k+2'

S deﬁning
Curve which is

1f we have 7 control points and order of curve k=3 thenn=6

and this B-spline curve has segments 6 -3 +2 = 5

P
ity t, 4 t3 t, t .
Five segments Q,, Q.. Qs, Qa4, Q:
Segment Control points Parameter
Q PP P to=0,t1=]ﬁ
Q. P,P,P;s t=1,4=2
Q ~ P,PsP, =2,t=3
Q4 P; Py Ps t=3,4,=4
Qs P, Ps P t=4t=5 |

There will be a join point or knot between Q.1 & Q;fori 23
at the parameter value t;know as KNOT VALUE [X].

If P(u) be the position vectors along the curve as a function
of the parameter u, a B-spline curve is given by

P(u)= ¥ PNi(u) 0 <u<nk+2
1=0

Nix(u) is B-spline basis function

Curve Modeling | 177

(u-X)Nuge (W) | Xisk =) Nicyy 1 (u)

- = ution: .
s R . o In Bezier curve the starting and ending contro] points lie on
The values of X, are the elements of a knot vector Satisfy,,, the curve 50 (0,0,0) and (-2,1,1) are starting and ending
thieelation Xa= e . control pomis and (7, 5, 2) and (2, 0, 1) are intermediate
The parameter u various form 0 to n—k+2 along the py, control points.
So there are some conditions for finding the NOT We know,

n
S[X

VALU]'E o Position vector P(u) = 3" P, BEZ, ,(u) for0 <u <1
X, (0 £1<n+k): Knot values &
X1=Olf1(k ' Where,
X,=i-k+1ifk<i<n

P, is control point position
We have 4 control points so Py varies k = 0 to 3

The Bezier blending function BEZ,, (u) are the Bemstein
polynomials,

X;i=n-k+2ifi>n
So as B-spline curve has Recursive Equation. So we stop
N, K@) =1lifX,<ux;.,

= 0 otherwise BEZ, ,(u) = C(n, k) u"(1 - n)™*

Example: where, C(n, k) are binomial coefficient

n=5k=3 S

then X,(0 <i < 8) knot values C(n, k) = K(n-k)!

X;{0,0,0,1,2,34444,} So, .)

No(u) = (1-u)*. Ny, (u) P,(u)=xoBEZq 5(u) + x,BEZ, 5(u) + x,BEZ, (u) + X;BEZ; 5(1)
Wheni=0,k=3soi<kistrue P (u)=yoBEZ,1(u) + y\BEZ, 3(u) + y;BEZ, 5(u) + y3BEZ; 3(u)
Xy=0 P,(u)= z,BEZg3(u) + z;BEZ, 5(u) + z,;BEZ, 3(u) + z:BEZ; 5(u)
i=1,k=3X,=0 Wheie,

i=2,k=3X,=0 BEZq3(u) = C(3,00u° (1 —u)’ = (1 -)’
i=3,k=3Xs=ikt+l =3-3+ BEZ, 5(u) = C(3,1)u'(1 —u)’ = 3u(l -u)’

X;=1 . BEZ, 3(u) = C(3,2)u*(1 —u)=3u*(1 —u)
i=4,k=3X,=ik+l= 4-3+1 BEZ; 3(u) = C(3,3)u’(1 —u)’ =v’

X=2 Now,

1=8,k=3Xs=i>nn-k+2=5-3+2=4

P,(u)=x,BEZ, 5(u) + X,BEZ, 5(u) + XsBEZ»3(0) x;BEZa,;(u)
=0*(1-u)+ 7*3u(] —u)+2*3u’(1 —w+ (2"

e — + BEZ ; (u) + Y;BEZ],E('U)
SOLVED NUMERICALS - Py(u)=yoBEZo(u) + yiBEZ,5(u) + y2BEL2

=0*(1-u)+ 5*3u(l —u)+0*3u’(1 -+ 1%’ .
Find the Bezier curve which passes through (0,0,0) and (- P,(u)= 2,BEZ,;(u) + z;BEZ; 3(u) + 7,BEZ;3(v) ;f z,BEZs 3
» L, 1) and is controlled by (7,5,2) and 2,0,1). . ~0*(1-uy+ 2%3u(1 P13l) 1%
‘ ‘ [2076 Ashwin Backi |

" | nsights on Computer Graphics -

In this way we will calculate

Curve Modeling | 179

=

————

2 A peramemic cubic curve passes through the point (9, ome
Mmdmﬂﬂm- f‘.‘ %. o}
% and | respectively. Determine the geometric coefficie,, .
matrix and the slope of the curve whem 1 = 0.5 g (_'5.—

1 coefhic NS are

55,33
The pomts on the curve are -
amar=0 39
28Hai=14 " at t = 0.5 1s found by 1aking the first der
“WlHme=34 sbove equation as follows DN
C-Dmr=1 2 =24 31's _is
Ay = RO I-XSOPOHI-20) P T | S B | PR
b a3 atll - O o 1 ofless 2
I muerm S e squance cam be wnnen as. I 0 o0 of|lass —2
-2 1 1@ g -
67 -20
L 220 | it | Lo/ ie :
& & 1 0|y ; — =-0.545
I & o ollpm
o . tion of Bezier curve whose control points are P,
nem 2 -2 L 1[0 (6, 8) and P, (9, 12). Also find co-ordinate of
7 = 0.8 [2071 Chaitra)

) M3 3 -2 1|l P

oints are Py(2, 6), P,(6. 8) and P+(9, 12)
f control points = 3
curve is a polynomial of degree one less than the

BEZR".I! (u)

 BEZ,,()

Curve Modeling | 181

The pos

- A) mul‘ﬁuim“ ares
Paramerric ey ' , s

(24, (4.3) and rs'-y nﬁkﬁ pa

Mﬁ.“ nd Dm%"“u ﬂ:*m‘)
R the gl Cag -2
Sg{..ﬂ'“: mﬂ!m""fmtug_x % Ft”,sf,f;l
- mwhuﬂﬂmﬂmm mesﬁi—j—
Jatt=p ; 49'3 PE——
(2,4) att =14 ot (= 0.5 is found by tking
(4.3)art =17 wjﬂ': ation s follows, e 5 s
Eraiae- - " I i3 _3 -2 1| 5 -2
Pty = [2e3d4]F:‘ﬂ}-l-{[-!:‘+3:’];p[1]+ gt i oflg o 1 ofl3 2
HE-F)Py [(r-2rsy)) F'{ﬂﬂb Lo oo silidss de
hmrﬂ’"’“"’“ﬁuﬂﬂn cin be writien a5
fore
2 -2 1 [“:;]ﬂp:g 20]
D="Fea-3 3 -2 -1||pm 4
Fy=['fr “a
B0 1 of|pm Swe=7g7 = -0.545
SRR , imis are Py
equation of Bezier curve whose control po
] T I b R fine :" 8 and Py (9, 12). Also find co-ordineie of
o ' ¥ M i, & Py {6, i
2 4 {iJ IJ-] [1] =3 3 =2 —1f|pm polnt ot u= 0.8, [2071 Chaitra]
] 3=;;":= ; 0 0 -1 0| St
5 =2 (?J [i] [T] : A L T Control palets are B2, 6), Py(6, 8) and Py(9, 12)
ok Naber of control points = 3
8 n 0 1ra -3 1 ™ A Bezier curve is a polynomial of degree ane less than the
— (00156 00635 025 i|[-3 3 -2 I :f:;} mmber of control points,
n4218 08825 075 1||o © 1 @ Al + Begree of polynarmin = 3| —
i I ! ijjr o o © U=(g
plo) 0 o] M) -
pt) (=] 5 -2 o Ep, BEZ, (u}
pi0)| 1033 2 .
g 499 —28]

/:m’//

I{u}‘l E o
zl,!':"l

b‘“\

BEZ, () = C(2Ju"(1-u)™ = 3*(1-0.5) (0)+6(0.5)(1-9 |

21

SR
C2k) k1(2—k)!

Pu)= Y x,BEK, »(u)

k=0

BEZ,,."'=C(2.,00u’(1—-u)* =(1-0.8)*

BEZ " =C@2.Du'(1-u) =2*(0.8) *(1-0.8;
BEZ,, _‘”’_c(z 0O’ (1—u)° = (0.8)> *(1 - 0.8)"
Puu) = xo BEZg{u)+x, BEZ, »(u)+x> BEZ:(u)
=2%(1-0.8) +6* 2*(0.8)' *(1-0.8)' +9*
(0.8)" *(1-0.8)"
7.76
Py(u) = yp BEZgy(u)ty) BEZ, »(u)+y: BEZ,5(u)
=6*(1-0.8)" +8*2*(0.8)' *(1-0.8)' +12*
(0.8)* *(1-0.8)°
=10.48
The coordinate point is (7.76, 10.48)

4. A cubic Bezier curve is described by the four control
points. (0,0), (2,1), (5,2) and (6,1) Find the tangent to the
curveatt=10.5

Solution:

Here, we know the Bezier cubic polynomial equation.

P(t) = (1-t)’Po3t(1-t)’P+36(1-t)P+'P;

The tangent is given by the derivative of the general

equation above,

P(t) = 3*(1-t)2Po+6t(1-t)P-6tP +3t(1-t)°P-3¢Py+61(1-D)F
+3¢%P,

XM = 3:‘2(1) xg+6t(1-t)x1-6tx +3t(1-£)x, -3t %, +61(1-t)x
3t'xs

182 | Insights on Computer Graphics

)2
0.5)* (2)-3(0. 5)’(5}*6(0)(1(3?)0

=6.75

i 2
Y’(() =314 y°+6t(l't))’1-6ty1+3t{1_t 2
3 3 } Y!‘3t2y2+6t(l_l)y:r+

=15

Or, In matrix form this equation js Written a

2)+3(0
(514300, ((5}) (1-

=1 3 _31 vy

pO=l @ el 83 o)

0 of|w,

1 0 0 o v,

Where,

Vo =(0,0)
Vv, =(2,1)
=(52)
=(6,1)

The tangent is given by the derivative of the general
equation above,

=t 3 =3 1{|n
-6
P)=p 2 1 of 30w
- 3 0w,
1 0 0 0]|v
Att=0.5, we get
4. § =8
-6 3 0||%
P'(t)= B0.5)2 2(0.5) 1 0
bost 209 10 5 ¢ o],
1 0 0] |y,

=[6.75 1.5 0 1]

| 1B

5. Design a Bezier curve controlled by points A(1, 1), B2

(4, 3) and D6, 4)
Solution:
Control point = 4

Degree of polynomial=n | = 3

Al L) =py

B(2,3)Y=p,

C(4, 3) = p-

D(6.4)=ps

Equation of Bezier curve .

n
plu) =3 p By, (u)
k=0

where p(u) = position vector

p. = control point

L 1l | i:| k
By« Kin Ky v (-u
Boswy=((3.0)u". (1 —u)’
3! ;
=U|~“ (1 —u)y
=(1 - u}"
B, J(u)=C(3,)u' (1 -u)
=3u(l —u)’
B, s(u) = C(3.2).u’(1 —u)*”
= 3u’(l —u)

B s(u) = C(3, 3) ul(l —u)" Y= .
po=po(1 —u)’ + py.3u(l —u)’ + p3u’(1 —u) + psu’
To find x(u) and y(u) |
Xo=Xo(1 = u)’ + x,.3u(1 - u)’ + x33u:’{l —u)+ x_;u:
Yo= Yoll - U,]] +yy.3u(l — u)2 +y3u (1 —u) + ysu
L, x(u) yw) |

0 1 1 J

02 | 1712 | 1984 |

184 | Insights on Computer Graphics

P
P,
L]
P
234567

Curve Modeling | 185

_Shrface"Mo_dél-iiig

—

6.1 Three-Dimensional Object Representations

Graphics scenes can contain many different kinds of obje,,
trees, flowers, clouds, rocks, water, bricks, rubber, paper, marl,|,
steel, glass, plastic, and so on. So, there is no one method that ¢y,
be used to describe objects that will include all characteristicy |
these different materials. To provide realistic displays of sceng,
we need to use representations that accurately model oy,
characteristics. .

Polygon and quadric surfaces provide precise deseriptig,
for simple objects like polyhedrons and ellipsoids. Spline surfi,
are useful for designing aircraf wings, gears, and o},
engineering structure with curved surfaces. Procedural meth .
such as fractal construction and particle systems are useful [,
accurately representing clouds, clumps of grass, and other nay, i
objects. Octree encodings are used to represent internal featupes
object, such as those obtained from medical CT images.

Representation schemes for solid objects are divided 10
two broad categories: Boundary representations and space-
partitioning representations; although not all representations |4l
neatly into one or other these categories.

1) Boundary representations

Boundary representation method is used to describe a thice-
dimensional object as a set of surfaces that separate the
object interior from the environment. E.g., polygon surfaces.
curved surfaces.

2) Space-partitioning representations
Space partitioning representation method is used to describe
interior properties by partitioning the region containing it
object into a set of small, non overlapping contiguous solic
(usually cubes). E.g., octree representation

186 | Insights on Computer Graphics

L

o2 polygon Surfaces
The most commonly ygeq

#: _dimcns.ional. object is a set of i rfac(:y ripresentatinn for g

e object interior. Many grapnp. Systepo

dgscﬁptio”s as sets of surface Polygong;,

endering and display of object

; : S Simple anq ¢
qurfaces are described with linear s o 0d fast becqyge all

: A , S. Almogg .

sackages provide this type of object representatiop 311“| Eraphics
reason WhY polygon descriptions gre often referreg : 1:15 o
graphics objects”. % “siandang

Polygon surface representation of
dividing the boundary surface into g number of
polygons. But for some objects, surfaces are gj
oo duce the po].ygon mesh approximation, Such rep
common in design and modeling applications, sine
outline can be displayed quickly to give a gcnéral
surface structure. Realistic renderings are produced by
interpolating shading patterns across the polygon surfaces to
eliminate or reduce the presence of polygon edge boundaries.

bounda

ms

an object jg Created by
interconnected
mply tiled o
resentations are

e the wireframe
indication of the

63 Polygon Table

A polygon surface is specified with a set of vertex
coordinates and. associated attribute parameters. Information of
each polygon is stored in polygon data tables that are used to
process, display, and manipulate the objects in a scene.

Polygon data tables store the coordinate description and
parameters that specify the spatial orientation of polygon surfaces
a well as the attribute parameters that specify the surface
characteristics such as surface reflectivity, degree of transparency,
surface texture, etc.

Polygon data. tables are organized into two groups:
Eeometric tables and attribute tables.
L Geometric table

This table contains vertex coordinates and parameters that
specify the spatial orientation of the polygon surfaces.

surface Modeling | 187

———

2)

Geometric data tables are usually organized into three lisg.
i. Vertex table
It stores coordinate values for each vertex i the objec
ii. Edge table
It contains pointers back into the vertex table to 1den,
the vertices for each polygon edge.
iii. Polygon-surface table
[t contains pointers back into the edge table to iden
the edges for each polygon.

Vertex Table

. -
|| Edge Table | | Polygon- Surface Table
]) . i

ViXL¥iZi ' " Ei:VLLVa .l | S,:E,E2E;
VaiXa Y122 E»:VsVs | | S2EsEsEsEs
ViiXa, ¥ | ‘ Ey:Vi VI i |I

VyiXg.Ya. 24 ‘ Es:Va,Vy ‘ |

VsiXs,¥5,25 Es:Va Vs ‘ ‘

J ‘EV_V'_J

a table representation for two adjan

Figure 6.1: Geometric dal
Ve vertices.

polygon surfaces formed with six edges and [i
three tables provides

Listing the geomerric data in
| components (veriiees

convenient reference to the individua
edges, and polygons) of each object.
Attribute table

This table contains attribute information
parameters that specify the degree of transparency ©
object, its surface reflectivity, and texture characteristics

includes
f the

that

188 | Insights on Computer Graphics

—

tests (gfxidelines) to generate ¢
°"" Check if every vertex is listed a5
) cdges.

Check is every edge is part of at |egs one polygon

Tror free table:
an endp,

gome
oint for a¢ least two

l:l)) Check if each polygon is closed.

; :

g Check lfea(?h polygon has at least one shared edge

3 Check if the edge table contajns pointers tg pc.lg -

ygons,

edge referenced by a polygon pointer has ag rzzi i
pointef back to be the polygon, e

¢4 Plane Equations

To produce a display of three-dimensional object, we must
10CESS the input data representation for the object through several
edures. These processing steps include;

Transformation of the modeling and world coordinate
descriptions to viewing coordinates, then to device
coordinates.

ii. Identification of visible surfaces, and

iii. The application of surface rendering procedures.

proc
i

For some of these processes, we need information about the
spatial orientation of the individual surface components of the
object. :

This information is obtained from the vertex co-ordinate
values and the equations that describe the polygon planes.

Equation for a plane surface can be expressed as

Ax+By+Cz +D =0 @)

where (x, y, 2) is a point on the plane, and cof:ﬁicienm
AB,C and D are constant that describe the spatial properties of the
plane, :

We can obtain the values for A,B, C and D by solving 2 set
te values for three 000~

of three plane equations using the coor
collinear points. We select 3 successive PO

lygon vertices (X1, Yu

A

zi). (X2 ¥ Z2) and (x5, ¥ Z3) and solve the following sci

g ; . . A B
simultaneous linear plane equations for the ratios 3. Ty » and I
)

A B €

px*tp¥ oA

A B (=

pr*tpYtpa!

A : [

DX tpRtpBET =

Using Cramer's rule, we get
1 vi z . 1L z

A=l ¥ =z B=| x2 1 z
1 y3 Zx x3 |z
xi il 1 Y Z

C= x; y» | D= Xy Yz Z2
x; y3 1 X3 Y3 @

After expanding the determinants, we get,
A = yi(zo-2sytya(zm 2)y (217 2)
B = x,(Xa—X3)+Z2(X3—X y+za(X1—X2)
C = x(ya-ys)FXa(ys=y1)HXa(y1=2)

D= _x[{YIZi_ylzl)_xi{y3zl_y123 }-'Xy[ylz;—ygzjj

other information are entered nt
A, B, C, D are computed for cach
data.

As vertex values and o the

polygon structure, values for
polygon and stored with the other polygon

Orientation of a plane surface in space can be
the normal vector to the plane.

The normal vector has Cartesian compone
where A,B,C are the plane coefficients calculated above-

described with

nts (A, B &

190 | insights on Computer Graphics

. N(AB,C)

Z

: 6.2: The vector N, normal to the surface of a plane described
P eqw;ioﬂ Ax + By +Cz +D=0, has Cartesian components (4 ; g)y

Usually we deal with polygon surface that enclose the object
ipterior in that case we need to distinguish between the "inside"
and "outside” faces.

If polygon _'erticcs are specified in a counter clockwise
direction when viewing from the outer side of the plane, in a right-
handed coordinate system, the direction of the normal vector will
pe from inside to outside. /

To determine the components of the normal vector for the
chaded surface, we select three of the four vertices along the
poundary of the polygon, while viewing from outside in counter
clockwise direction.

Y
4

v2(1,1,0)
/_:.N

/] —> 5
V1(1,0,0)

/ V3(1,0.1)
z
of the unit cube has plane

Figure 6.3: The shaded polygon surface 0
equation x - 1 = 0 and normal vector N = (1,0.0)

; surface Modeling | 191

A ———

~

=

Now using the co-ordinate values for these vertices.
solve the equation for A, B, C and D are given.

A=1,B=0,C=0,D=-I

This shows the normal vector is in positive x-direction. |
can obtain the element of normal vector by calculating the vee
cross product.

We again select any three vertices in counter clocky
direction while viewing from outside and calculate the nor,

vector as

ﬁ:{g"_’l’}x{;’:_vl}
This will give us the direction of N
For points not on the polygon surface

Ax+By+Cz+D #0

So,

If Ax + By + Cz + D < 0, the point (X, Y, 2) 15 Insid

surface.
IfAx +By + Cz+D>0, the points (X, y, z) 1s outside

surface.

Plane can also be represented as
position vector of any given point on the plane.

Polygon meshes
Some graphics packages provide several polygon |
for modeling objects.

unciions

But when object surfaces are to be tiled, it is Mot

convenient to specify the surface facets with a mesh functions

A polygon mesh is a collection of vertices. edges and
;_.{l)]'l

polygon connected in such a manner that at least two polve
share an edge and hence bounded the planner surface.

192 | Insights on Computer Graphics

N‘P:_D, where P ;i

m;nal'l !YPES

Triangular mesh
with n vertices, produce n-2 tria;, gles

Figu!.w 6.4: A triangle Strip formed
with 11 triangles 13 verfices

Quadrilateral mesh

m=35
n=4
Quadri!aterals =(m-1)n-1)=12

Figure 6.3: A quadrilateral mesh containing 12 quadrilaterals
constructed from a 5 by 4 input vertex array

~surface Modeling | 193

—

T/i:s_i_bie_Su_r?'ace Detérmination

7.1 Visible Surface Determination (Hidden Surt,

Elimination)

Visible surface determination 1s a process of identil

those parts of a scenc that are visible from a chosen vicy, |,
position. There are numerous algorithms: some require |
memory, some involve more processing time, and some apply
to special types of objects. The choice of a particular algy,
depends on factors like the complexity of the scene, type of ol
to be displayed, available equipment, and whether st
animated displays are to be generated. Visible-surface deti
algorithms are broadly classified into two categories:
i. Object-space method
This method deals with object definitions dirceily |
compares objects and parts of objects to each other wiil
the scene definition to determine which surfaces.
whole, we should label as visible.
ii. Image-space method
This method deals with the projected images ol i
objects. In this method, visibility is decided point by
point at each pixel position on the projection planc. Viosl
visible-surface algorithms use image-spacc methods.

7.2 Back-Face Detection -

It is a fast and simple object-space method for identifying
the back faces of a polyhedron (a solid in three dimensions with
flat polygonal faces, straight edges and sharp corners or vertices)
and is based on the “inside-outside” tests.

A point (x, y, z) is “inside” a polygon surface with plant
parameters A, B, C, and D if

Ax+By+Cz+D<0

194 | Insights on Computer Graphics

- inside point is along the line
o DL be a back face (we are insi; i
e

¢ pU % S
?;e ihe front of I from our viewing positiop),

ight to the surface

that face and cannoy

To simplify this test, consider the normal
v

urface. If V is a vector in the view:
Oi}rgoﬂ . 1es s € Viewing dirept;
O o, i
i

ector _N‘ to a

>0

If object description have been converted to project;
. sordinates and our viewing direction is paralle] 1o the \1:2::::10“
s, then? = (0 0; V) and -

yN=VzC
so that we only need to consider the sign of C, the 2

component of the normal vector N .
Yv

N=(4,B,C) .

Zv

Figure 7.1: A polygon surface with plane parameter C < (in a right-
handed viewing coordinate system is identified as a back face when the
viewing direction is along the negative z, axis.

In a right-handed viewing system‘ with viewing direction
along the negative z, axis, the polygon is a backface if C<0. Also,
We cannot see any face whose normal has z component C= 0
since our viewing direction is grazing that polygon. Thus, in
general, we can label any polygon as a backface if its normal
vector has a z component value

C<o.
‘-‘-—___———

Visible Surface Determ‘mation] 195

S - — A

7.3 Depth-Buffer Method (Z-Buffer)

It is & commonly used image-space method for detee,
visible surfaces. This method compares surface depth at cach)
posttion on the projection plane. This procedure is also (_',;i[];,_
bufter method. as object depth is usually measured torm the o,
plane along the 7z axis of a viewing system. Each surface of a
is processed separately, one point at a time across the surface, |
method is suitable for scenes containing only polygon suriy, .
With object descriptions converted to projection coordinates, (.
(% ¥ Z) position on a polygon surface comesponds [
orthographic projection point (x, y) on the view plane. For
pixel position (x, y) on the view plane. object depths ¢y
compared by comparing z values. Along the projection line
the position (X, ¥) in view plane taken as x,y, plane. Surface

closest at this position, so its surface intensity value at (x

saved.
yv

Figure 7.2: At view-plane position (X, ¥), surface 81, has the smalled
depth from the view plane and so is visible at that position

Depth-buffer method requires two buffer areas:

i. Depth buffer that stores depth values for each (x.y)
position.

ii. Refresh buffer that stores the intensity values for each
position.

hiially, all positions in the depth buffer are set © ¥

(minimum depth) and the refresh buffer is initialized

196 | Insights on Computer Graphics

P intensity. Each surface listed n th
€ pol

Ygon table is

€. Calculatip

mclﬂ at. eﬂCh (x) y} ﬁxed p{)siﬁon' The sl g the de‘pth (

v8 d to the value previously storeq ; alculateq depth ;

cot™! the calculated depth ; ©¢1n the depth buff; =
ion. If pth is greater than er at that

sitl .
tpl::’ th blilffcir, the new depth is stored, and th:s:;l;e stored in
¢ that osition is determined and placeq in fhe i ce intensity
?n 2 refresh buffer. X, ¥) location
th values for a surface position
fon the plane equation for each surface as

~_Ax-By-D 0
1

(X, ¥) can be calculated

i T e
y
A
Y
y-1
Ll .
x x+1 -

Figure 7.3 : From position (x, y) on a scan line, the next position
across the line has coordinates (x+1, y), and position immediately
below on the next line has coordinates (x, y-1)

* For any scan line, adjacent x and y values differs by 1. If the
depth of position (x, y) has been determined to be z, then the depth
Z of the next position (x+1, y) along the scan line is obtained from
equation (i) as

-A(x+1) ~By-D g
= ()C - SPPSSIE L.

2=z —% (if)

z

ach surface, so succeeding

The ratio —A/C is constant for e :
obtained from proceeding

depth values across a scan line are
Values with a single addition.

| " ona lcﬁ

On each scan line, we start by calculating the i;pﬁtlh\farllues at

¢dge of the polygon that intersects that scan line.
rmination | 197

visible Surface Dete

B

-~
—

cach successive position across the scan line are then calculaie
equation (11i).

We first determine the y-coordinate extents of each poly,
and process the surface from the topmost scan line (o the by,
scan line as shown in figure.
top scan line

v scan line
left edge ™
intersection

bottom scan [i,
Figure 7.4: Scan lines intersecting a Polvgen surfaces
Starting at a top vertex, we can recursively calculy,

‘ , S
positions down a left edge of the polygon as x'= x — . where |

the slope of the edge (see Figure 13.7)

v

v scan line

y—1 scan line

— X

Figure 7.5: Intersection posttions on successive scan lines along a
left polygon edge.
Depth values down the edge are then obtained as
-Ax'-By-D

C

~A(x-1)-B(y-)-D
m

C
:—Ax—By—D+A(m+B)
C C
A/m+B

+__.
C

=Z

*198 | Insights on Computer Graphics

ertical edge, the slope ;e « .
For v ope is Infinite o, 2=,.B

For polygon surfaces, depth-bufge,
__jement and it requires no sor
imP ver, it requires second buffer
HU“’:h puffer. Another drawback ;
e find one visible surface at eac
aﬂ]ﬂ); only opaque surfaces and ca
t";lr more than one surface, as i

e to be displayed.
74 A-Buffer Method

This method is an extension of depth-buffer methog Th
fer method represents an antialiased, area-a;ferae;‘i-
ot ulation-buffer method. '_['?m A-buffer method expandsgmé

th-buffer so that each position in the buffer can reference a
jnked list of Sm-‘faces,. Thus, more than one surface intensity can be
aken into consideration at each pixel position, and object edges
can be antialiased.

Each position in the A-buffer has two fields:
+ Depth field — stores a positive or negative real number

; Methoq ;
n:lg of the surfa]cse o
L ::};l::{l:uffer} in addition to the
rue “Pth-buffer method cap
s POsition, Thyt 18, it deals

accumulate intens,ity values

n :
CCessary if transparepy surfaces

.ry Casy tp
510 a SCene.

o Intensity field — stores surface-intensity information or a
pointer value.

If the depth field is positive, the number stored at that
position is the depth of a single surface overlapping the
corresponding pixel area. The intensity field then stores the RGB
components of the surface color at that point.

If the depth field is negative, this indicates multiple-surface
contributions to the pixel intensity. The intensity field then stores a
Pointer to a linked list of surface data. Data for each surface in the
linked list includes

-* RGB intensity components
* Opacity parameter (percent of transparency)
* Depth

* Percent of area coverage

Visible Surface Determination | 199

o Surface identifier
o Other surface-rendering parameters

surf surf
1) —%

e Pointer to next surface

depth mtensity depth intensity
field field field field

(@)]

Figure 7.6: Organization of an A-buffer pixel position: (a) si .,
surface overlap of the corresponding pixel area (b) multiple-sup,.,
overlap.

75 Scan-Line Method

Scan-line method is the image-space method for remoying
multiple hidden surfaces. As each scan line is processed, all
polygon surfaces intersecting that line are examined to determine
' which are visible. Across each scan line, depth calculations are
made for each overlapping surface to determine which as nearesl to
the view plane. When the visible surface is determined. the
intensity value of that position is entered into the refresh buffer.

T~

Different data structures or tables are set up for various
surfaces which includes both an edge table and a polygon table.

i. Edge table: It contains coordinate endpoints of each line in
the scene, inverse slope of each line, and pointers into the
polygon table to identify the surfaces bounded by each line.

ii. Surface table: It contains coefficient of the plane equation
for each surface, surface intensity information, and pointers
to the edge table.

i, Active edge list: It contains only edges that cross the currer!
mmﬂ, sorted in order of increasing x. It facilitates the

v m for surface crossing a given scan line.
LC : s"‘?“‘““' It indicates whether a position along 2 ¢
 line is nside or outside of the surface. At the leftmos!
dary of a surface, the surface flag is turned on and 4t i
 boundary it is tuned off

1
Figure 7.7: Scan line crossing the projection of

% wo surfae :
in the view plane faces, S1 and 52,

Active list for scan line 1 contains informat;

table for edges AB, BC, EH and EF. For positiongnag{r):gn lt}?ics iiﬁ
line between edges AB and BC only the flag for surface §, is on
So, on depth calculations are necessary and the inltensity:
information for surface S, is entered from the polygon table into
the refresh butter. Between edges EH and EF, only the flag for
surface S; is entered into the refresh buffer, while for all other
positions the intensity values are set to the background intensity.
Similarly, active list for scan line 2 contains the edges AB, EH, BC
and EF. Between edges AB and EH, only the flag for surface S, is
set on and intensity value for S, is stored into refresh buffer.

Between edges EH and BC, the flags for both the surfaces S,
and_ S, are set on. For this interval depth calculation must be alone
(using the plane coefficients) and depending upon which surface is
closer to the view plane, its intensity value is stored into the refresh
buffer. Between edges BC and EF, the flag for surface S, goes off

:ﬂ{f;:he intensity value for surface S, is stored into the refresh
uller,

SOLVED NUMERICALS
R?presem the following surfaces by polygon table method.
Find the normal of surface S;. [2076 Ashwin Back]

B(5,8,6)

E(12,6.9)

2 (2.5, 1
A(L2,3) D(8-3.2)

Visible Surface Determination | 201

Ierten table Fdege table Polygon surpu
1.3 e 4.8 \ e
B: 5506 e 4, (N
€258 e-(, B
D:8-3.2 e (. D
ER2AY e Dt

e k. B
We can in < y surflave 5 by s
----- ™ S Wl

b

& Fimd the wisibility for the surface AED where ohverver o

Pri.s.s)
£9.1.9) B0 0
Al 0.0y
Ce-1.0,0)
P(5.5.5) .

Solution:
Seep I:
Find the normal vector n for AFp el
ac —
clockwise direction convention) ¢ (always take any.

ic. AE*AD, NOT AD*A}
AE=E-A
=(0-In+(0-0y+0-0Kk
=it
N = AE*AD
=(-i+)) % (i k)
Y T
-1 10
-1 01
(1 -0)-j(-1 +0) + k(0 + 1)
=i+j+k
Step 2:
The observer is at P(5,5.5) so we can construct the view
vector V from surface to view point A(1,0,0) as
V=PA=(1-5)i+(0-5)+(0-5K
= 4i-5j-5k
Steps 3:
T.o find the visibility of the object, we use dot product of
view vector and normal vector N as
VN = (—4i=5j-5K)(i+j+k)
=-4-5-5
=-14<0
This shows that the surface is visible for observe

Visible Surface Determination | 203

T —————

Ilumination and Surface Rendering
Method

—

8.1 Illumination Models and Surface Render.ﬁ,_:._

Technique

8.1.1 Illumination model/lighting model/shading model

Realistic displays of a scene are obtained by genera .
perspective projections of objects and by applying natural ligly,,
effect to the visible surfaces.

Illumination model is used to calculate the intensity of |10y
that we should see at a given point on the surface of an objeci AR
illumination model (equation) expresses the components of liuly
reflected from or transmitted (refracted) through a surface. There

are three basic light components: ambient, diffuse and specular,
8.1.2 Surface rendering algorithms

Use the intensity calculations from an illumination mode! o
determine the light intensity for all projected pixel positions for the
various surfaces in a scene. Rendering can be performed by
applying the illumination model to every visible surface point, or
the rendering can be accomplished by interpolating intensitics
across the surfaces from a small set of illumination modcl
calculations.

Illumination models involve number of factors like

L. Optical properties of the surfaces (transparency, reflectivity:
surface texture)

ii. Relative positions of the surfaces in a scene.
ui. Color and position of the light sources and
1v. Position and orientation of the viewing plane.

204 | nsights on ComputerGraphics

TN R

5

g.2 Light Source

Total reflected light from an opa

s que non i o o
the sum of the contributions from lig luminoyg object, is

ht source nd
i ch,er It %
surfaces in the scene. So, a surface that is not ditectly expzﬂ?lmg

Sedto a

ight source may still be visible if : i
Ill,ig;ht emitting sources -are light hi‘l‘;:‘:’l;&bff:-s E?;l:ilungnat?d’
sources are .wali:v, of a room, other reflecting surfacer: ;:Etmi
[uminous object, in general, can be both a light source and a 1; h
reflector, €.g. a plastic globe with a light bulb, etc. e
1. Point source
« Simplest model for a light emitter
« Rays from the source then follow radially

diverging paths
from the source position ¥

©
Reflecting surface

Figure 8.1: Light viewed from an opaque non luminous surface is
in general a combination of reflected light from a light source and
reflections from other surfaces

* Reasonable approximation for sources whose dimensions
are small compared to the size of objects in the scene.
E.g. sun. '

2. Distributed light source

* Area of the source is not small compared to the surface in
the scene. o

* A nearby source, such as the long fluorescent light 15
more accurately modeled as a distributed light source.

205
Illumination and Surface Rendering Method |

- distributed light source
point source

Light reflection

When light is incident on an opaque surl‘ace,l past of i i,
reflected and past is absorbed. Amount of incident llghF reflecied
by a surface depends on the type of nature. shining materials reilo
TT;OI’E of the incident light, and dull surfaces absorb more o
incident light. Similarly, for an illuminated transparent surlic.
some of the incident light will be reflected and some will he
transmitted through the material.

1. Diffuse reflection
Diffuse reflection is the reflection
of light from a surface such that a
ray incident on the surface is A
scattered at many angles rather
than at just one angle as in the case
of specular reflection. An ideal ™,
diffuse reflecting surface is said to A
exhibit Lambertian reflection, Fig 8.2: Diffisse
meaning that there is equal reflection
luminance when viewed from all
directions lying in the half:space
adjacent to the surface.

2. Specular reflection
Specular or regular reflection, is T /
the I!Jim?'-like reflection of waves, ' /
such as light, from a surface. In this
m; ﬁlﬂh Il'icident

ray is
reflected at the same angl.

super imposed o e
¢ to the

H’ﬂr'r'{pnn Ve

206 1 Insighson Computer Graphies

Fig 8.3: Specudar pefleciint

surface normal as the incident ray, but on th
of the surface normal in the plane formed
reflected rays. The result is that an image reflected by th
surface is reproduced in mirror-like (specular) fashion. -
The law of reflection states that for each incident ray the
angle of incidence equals the angle of reflection, and the
incident, normal, and reflected directions are coplanar.

€ Opposing side
by incident and

83 Basic [lumination Models

Ilumination model is method for calculating light
intensities. Light calculations are based on the optical properties of
the surface, the back ground lighting conditions and the light-
source specifications. Optical parameters are used to set surface
properties such as transparency, opacity etc, and these control the
amount of reflection and absorption of incident light. All light
sources are considered to be point source specified with a co-
ordinate position an intensity value (color).

1. Ambient light

» A surface that is not directly exposed to a light source
will still be visible if nearby objects are illuminated.

» It is non directional light source that is the product of
multiple reflections from the surrounding environment.

» It is a basic illumination model, where we set a general
level of brightness for a scene.

+ It is a simple way to model the combination of light
reflections from various surfaces to produce a uniform
illumination called the ambient light or background light.

* Ambient light has no spatial or directional characteristics

* Amount of ambient light incident on each object is a

constant for all surfaces and over all directions, but the

intensity of the reflected light for each surface depends
on the optical properties of the surface.

So if I, is the amount of ambient light incident on any

surface, the ambient light reflection is given by ambient

illumination equation,

A 7
lllumination and Surface Rendering Method | 20

1=K.*1,
We have K, = ambient reflectivity or ambient refl
coefficient which ranges from 0 to L. It is a ma
property.

2. Diffuse reflection

« Ambient light reflection is an approximation of glo}, |
diffuse lighting effects.

. Diffuse reflections are constant over each surface |, .
scene, independent of viewing direction.

. Amount of incident light that is diffusively reflected .
defined with a surface parameter Ky called diffi..
reflection coefficient on diffuse-reflectivity.

« K, is assigned a constant value in the interval 0 to |
according to the reflecting properties we want the surfuace
to have.

« For highly reflecting surface, Kg—1 and for a very dull
surface K4—0
If a surface is exposed only to ambient light, the
intensity of diffuse reflection at any point the surface is
Lambairr = Ka*1;

« Ambient light produces flat uninteresting shading for
each surface so scenes are rarely rendered with ambient
light alone.

« At least one light source is included in a scene, often as 2
point source at the viewing position.

Ideal diffuse reflector

It scatters diffuse reflections from the surface with equal
intensity in all directions. Since radiant light energy from any point
on the surface is governed by Lambert's cosine law, ideal diffusc
reflector is often known as Lambertian reflector. Lambert's cosin®
law states that the radial energy from any small surface area A in
any direction N relative to the surface normal is proponional to
cosdy and the light intensity depends on the radial energy P’
projected area perpendicular to direction dn.

208 | Insights on Computer Graphics -

i.e. 1=dA cosfn

Radiant energy direction
dA

Fig 8.4: Radiant energy from a surface area d in direction

relati
to the surface normal direction e

Thus, for Lambertian reflection the intensity of light is the
same over all viewing direction. Even though there is ﬁquai Lo
scattering in all directions from a perfect diffuse reflector, the
brightness of the surface does depend on the orientation a} the
surface relative to the light source.

Surface perpendicular to the direction of incident light

appears brighter than the one with some oblique angle to the
direction of the incoming light.

_

_—
—_—

—_—

. —_
—_—

_

—_ :

>

Fig 8.5: Specular reflection super imposed on diffuse reflections

~ If 0 is angle of incidence between the incoming light

direction and the surface normal then the projected area of a

Surface path perpendicular to light direction is proportional to cosh
N A

] X the
Fig 8.6: An illuminated area projected Pemendmdar 1o the path of
incoming light rays

= d| 209
lumination and surface Rendering Method |

_

Thus, the amount of illumination (or the number of nei,.,
light rays cutting the projected surface path) depends on cos 4

If the incoming light from the source is perpendicular |,
surface at a particular point, that point is fully illuminated.

As the angle of illumination moves away from the sy,
normal the brightness of the point drops off.

If I, is the intensity of the point light source, then the diffise
reflection equation for a point on the surface is,

I|,d|ﬂ' — Kd].g COSB.

A surface is illuminated by a point source only if the ang|e
of incidence is in the range 0” to 90° for which cos® is in the ra.
0 to 1. When cosB is negative, the light source is behind 1-@,.;
surface.

If N is the unit normal vector to a surface and L is the
direction vector to the point source from a position on the suri
then,

ace

N.I= cosd
__NI
Ni.[Lf
and

L= Kl(N. L)

To light
source

Figure 8.7: Angle of incident 6 between the ynit i ight-source direction

vector L and the unit surface normal N.

::e c:: combine the ambient and point source intensity
ons to obtain an expression for the total diffuse reflection

210 | Insights on Computer Graphics =i

calcul

pro
gpecular Reflection and the Phong mode]

L =Ke L+ Ka [(N.T)

Whose both I, and K, de

. pends y
perties and are assigned values i PON surface

N the range from 0t | Materia|
Highlight or bright sports seen o
of total or hear total reflection
concentrated region around the sp

n shiny surfaces as 5 result
of the ncident light i a
ecular reflectjye angle.

i Noq

=i

_ Figure 8.8: Specular-reflection angle equals angle of incident 6.
L = unit vector directed
V = unit vector pointing to the viewer
R = unit vector in the direction of ideal specula reflection
N = unit normal vector of the surface point ion.
For an ideal reflector (perfect mirror), incident light is
reflected only in the specula- reflection direction, i.e. ¥ and
R vectors coincide and $=0
Objects other than ideal reflectors exhibit specu'la mﬂeginns
over a finite range of viewing positions around vector R

Shiny surfaces have a narrow specula-reflection range,
where as dull surfaces have a wider reflection range.

Phong model, developed by phong Bui-Tuong, is used to
calculate the specula reflected range, which sets the intensity
of specula reflection proportional to Cos™¢.

¢ can be assigned values in the range 0° to 90° (cosk™
1)

ns (specular- reflection parameter) is
of surface that we want to display.

0to
determined by the type

i d|211
Wlumination and Surface Rendering Metho!

a very shiny surface is modeled with a large value for |, |
100), and duller surface is assigned smaller values (say |

for a perfect reflector, ns is infinite.
Phong model calculate the specular reflection light inge,

as
[.'ipEC = W{ﬂ} I| cos J‘sd}
Where I, = incident light intensity

W(0) = 1at 6= 90°, and all of the incident light is refleci. |

W(8) = Specular-reflection coefficient
Cos]sﬁﬁ
cost
I

Dull surface Shiny surface

’ 90’ A »
.]Cﬁ 90“ 8

Figure 8.9: Plots of cos" ¢ for several values of specular parameter i

w(8)

silver

0.5

Fij : ; -
igure 8.10: Approximate variation of the specular-reflection coefficient

as a function of angle of incidence for different materials.

212 | Insights on Computer Graphics

[l
=|
[l
= =~
~i

Figure 8.11: Calculation of vector R by consi e i
onto the direction of the normal vecior I yjections
The projection of L onto the direction of the normal vector is

obtained with the dot product N. L.
N.

(The vector projection of L onto N is % N

The scalar projection L onto N is %}

So,
R+L=QN.L)N

R=(@N.L)N-L

As seen from the figure for W(8) vs 6, transparent materials,
such as glass, only exhibit appreciate specula reflections as 0.
approaches 90°.

But many opaque objects exhibits almost constant specular
reflection for all incidence angles. For this case, we can
replace W(8), with a constant specular-reflection coefficient
ks, whose value can be assigned in the range 0 to 1

Also,

50, Ipec = K I (V.R)™

Now,

Combined diffuse and specular reflection,
I = Lig+Lpee

= Ko+ kel (WD) + ki (VR
the scene, then

If there are more than one light SOUrces in
ndering Method | 212

Ilumination and surface Re

e

I = Kl +Z |1j{Kd(N.>L_.1)+K;;U?.R_I')”‘=']
i=1

Intensity Attenuation

As radiant energy from a point source travcl;s. through «p,.

its amplitude is attenuated by the factor 1/d”, where

distance that the light has traveled.

. Which means a surface close to the light source (smy
receives a higher incident intensity from the source 1),
distant surface (large d).

. So, for realistic lighting effects, we should take into accoy,
the intensity attenuation, otherwise, it produces unrcali.
effect as we will be illuminating all surfaces with the s,
intensity, no matter how for they might be from the liply
source. =

. But simple point source illumination model does not always
produce realistic pictures, if we use the factor 1/d"
attenuate intensities, as it produces very little variation when

d is large.

. Graphics package have compensated this problem by using
universal quadratic attenuation function as the attenuation
factor.

f(d)= 1/(ag+ad+ard’)

where d is the distance to the light source. And a, b and ¢
are properties of the light . The numbers a, b, and ¢ are
called the “constant attenuation” , “linear attenuation”, and *
quadratic attenuation” of the light source. OpenGLI.1
supports attenuation. By default, a is one and b and ¢ arc
zero, which means that there is no attenuation.

. Required effects can be obtained by varying the values of .
aj, and a,

or

fn= (K AK K)

d_* distance between the light and the surface being shaded
K = eonstant attenuation factor
214 | Insights on Computer Graphics .

8.4

e ——

K4 = quadratic attenuation factor
Using the attenuation function

1= Kils +Z; = lf(di)lli[](d (ﬁm * KS(?'E’)HS]

Surface Rendering Methods

K, = Linear attenuation factor

The standard objects that are formed with polygon surfaces

are rendered by the application of an illumination mode|

1. Constant shading 2. Giraud shading
3. Phong shading 4. Fast Phong shading
Constant Shading

« Constant shading is also called flat shading

« Itis fast and simple

« A single intensity is calculated for each polygon and all
points over the surface of the polygon are then displayed
with the same intensity value

« Useful for quickly displaying the general appearance of a
curved surface.

+ Provides an accurate rendering for an object if all of the
following assumptions are valid

i. The object is a polyhedron and is not an
approximation of an object with a curved surface.

ii. All light source illuminating the object are sufficiently
far from the surface so that N.L and the attenuation
function are constant over the surface.

iii. The viewing position is constant over the surface,

* The sharp intensity discontinuation is seen in the border
between two polygon.

Gouraud Shading (Intensity Interpolation Me-llltld) ,

* Renders a polygon surface by linearly interpolating

intensity values across the surface. S~
* Intensity values for each polygon affh:i:i;on edges,
values, of adjacent polygons along n that can

) VT inuatio
thus eliminating the intensity dis contin

occur in flat shading.
Method | 215

Illumination and Surface Rendering

e

e R R in figure, a scan |ine
. realistic results, but requires coins As shown In Tigure, a scan line inters
. Pl’OdLILLlh 1';?:.;“::d stic now, Obtaln lntenSIty value at any ;Etfn:wl:? CdgE 12 and 23
more calculations. : s along th
_ ke (e a0 ine, we do calculation in the f C g the scan
Each polygon surface 1s r::ndcfui with Gouraud shad, | ,‘ﬁ_ﬂ* + vy DIIOng manner,
! performing the following Cﬂ!c”“f“""“' _ L=31-2 ht+iis b
| i Determine the average unit vector at each polygon veri Similarly,
: B % i N;\- 'y 5= 2—
| Nv = k=l 5= M*Iz v uEi*B
= Nv yz-y3 y2-y3
! |Ea— =1k | x‘p—xﬁ*l4 x4—xp
' = + — %
| N then, Ip x4—x5 x4-y5 I5
d, along the edge we make i 5
;?1]:ensity values ¢ ¢ incremental calculations for
_ XYYy Y1V
1= y1-y2 I y1l-y2 L
IR =) LS e e ()
Figure 8.12; The normal vector at vertex Vis calculated as the aver o, Yi—y2 Y-y
of the surface normals for each polygon sharing that verte:. = S 1 wi-p =¥ +1 o
il Apply an illumination model to each vertex to calculuic e Yi—¥z ! Yi—¥: 2
vertex inensity. . R et Y s L Gal= i I
= KL +k (N.I) + kI, (V.R)™ Y1—Y2 Y=2 yi-y: ? yi-y
iii. Linearly interpolate the vertex intensities over the surfac: ol =1 ﬂ—I|—+—I?—
the polygon. Yi=Y2 Yi—-¥2
For cach scan line, the intensity at the intersection ol the :I+12—_I-L
scan line with a polygon edge is linearly interpolated from Y= 3
the intensiti 1 -
| ities at the edge endpoints. thenI'=1+ 1222
. yl—-y2
5
1 P \ b
3 1 scan line y; | _Bbaya)
2 —— Scan line 1
y-1 I ?\I:' \ —Scan line 2
i . o ?----E--_ hixz2ya)
igure 8.13: F : , 3
2 or ground shading, the intensity at point 4 is linew! : : »X

x+1

in i
lgpf)la:ed _ﬁ—am the intensities at ver

tices I and 2, The intensity at proit!

FI
'sltm 8.14: Incremental interpolation of intensity values along polygon
edge for successive scan lines.

lumination and Surface Rendering Method | 217

We make, similar caleulations tw obtain successive
¢ e -

values along horizontal hne.

Advantages

. Removes the it
constant shading model.

Jensity discontinuitics associated

Disadvantages

number of polygons while representing the object
3. Phong shading (Normal Vector Interpolation shadiy).
« Itis normal vector interpolation method

« Creatly reduced mach band effect

the vecior normal over the surface of the polygon.

« Displays more realistic surface reducing mach

effect.

Steps:

I. Determine the average unit normal vector at each polvuon

vertex.

ii. Linearly interpolate the vertex normal's over the surfacc of

the polygon

. Apply an illumination model along each scan linc 10

calculate projected pixel intensities for the surface points.

Wy - N,

=

(X1,y1)

P\ Scan line
(x,y) I

rxls Yz]

Figure 8.15: | i
mierpolation of surface normgls along a polygon edze

S, o
E ., 218 | Insights on Computer Graphics

Lincar intensity interpolation can cause bright o
intensity streaks, called mach bands, to appear e
surface. This effect can be reduced by increasing .

More accurate interpolation method which interpaliie,

As shown in figure, intensity a point g}
. 0 i
calculated first by interpolating the norma| Egctiz:t;c? e
end points of the edge, and finally applying the illuﬁi:::t‘lhe
10n

model.
o y-¥Z N YITY o=
N=3152 % Mt igs
Advantages
. Displays more realistic highlights in a surface.
. Reduce mach band effect.
pisadvantages
. Requires more computation than the Gouraud shading
method.
. It is expensive rendering method.

SOLVED NUMERICALS

1. Find out the intensity of light reflected from the midpoint P
on scan line y = 3 in the above given figure using Gouraud
shading model. Consider g single point light source located
at positive intensity on z-axis and assume vector to eye as
(LL1). Givend=0,k=1L1la=11=10,K,=2,K,=K;=
0.8 for use in a simple illumination model.

(10,10 1)
6 (10,10,0)
(l|5’0)
y=3 8
~7
(10,1,1)
4 (1,1-1) 2(51,00 5
Sﬂfuﬁou:
Step 1

A ~ _-h . o
Calculate unit normal vectors Nj, Ny, Nj at vertices 1,2 and

3 respectively.

" 9
lllumination and Surface Rendering Method | 21

The normal vectors at the vertices can be approxi;,,., N
averaging the cross product of all the edges that tery,,, "

the vertices. It is important that the order of vecioy | |II
oyl

be so chosen that the cross product yields outwarq , ~*

vectors only.
The normal vectors at 1,

N/=V,Vax ViVy +ViVix ViVe+ ViVyx vy,
- @45y (O1+S]) + O+51) X (SR + (4jk) 4y
= 5-13j+117k

The unit normal at 1,

G131k
A1PH=13)*+117
=0.01i+0.11j+0.99k
Similar at 2,
ﬁz' = VoVy x VoV + VoV x VoV + Vo Vs X VLV,
= 13i4)+117k
v il
N, =“_,2_
[N,
= -0.11i+0.001}+0.99k
Similarly at 3,
Ny = 4i4}+146k
AES T
| El)3'|

= 0.03i-0.03].0.99%

W\————— M—f—""'J

T R

step 21
Calculate unit reflection vectors R, R,

g
i R ,
and 3 respectively 3 at vertices |, 2,

-

{

- . =3
The projection of L onto the direction of the normal vector
is obtainegi with the dot product ﬁf:
So,
R+L=@NID)N

R =@NI)N-L

R =28.DN-T
= 2((0.011 — 0.1} + 0.99k).k)(0.013 - 0.11] + 0.99k) -
;-

= (0.02i - 0.22] + 0.96k)
R =2, DNo-T

= (0.021 - 0.22) + 0.96k)

Ry =2®, D) Ns-T

= (~0.061 — 0.06] + 0.96k)
Step 3,
Calculate intensities I,, I, I; at vertices 1, 2, and 3
respectively

| (K (Ny.L)+K,) Ry v)™)
R K+d

lllumination and Surface Rendering Method | 221

T=(001f - 0.11] +0.99%). k
=099

e
Ny

2 = (0,021 -0.22] + 0.96k).(0.581 +0.58] + 0,55,
V=002

= 0.44
[= (1)0.10)+(10.1)((0.10)(0-99)+(0.80)(0.44)")
=2.64
[{Kd(N2ZL)+Ks)R2.Y) ™)
s K+d

N.L=(0.011 - 0.11j +0.99k). k

=0.99
R.V = (0.02i - 0.22] +0.96k).(0.58i + 0.58] + 0.58k)
=0.44

L =(1)(0.10)+(10.1)((0.10)(0.99)+(0.80)(0.44)")
=2.64

Similarly, calculate T_\I’;. f:, R’;V and we get

L =3.09

Step 4

Interpolate intensities I, I, and I, at a, b, p respectively
Referring the figure,

The scan line y = 3 containing point p intersects the edges |-
2 and 3-2 respectively at a and b.

A8y _Fi—F

X=X yi-y,
X—d Yoo ¥
L% Yo%

Using the slope of the edges the co-ordinates of a and b ar¢

found to be (3,3,0) and (6.11 ,3,0) respectively .

—_— o
222 | Insights on Computer Graphics -

i

The coordinates of p, the midpoint of 4 ;
3,0). Now we have apply 3 stage interpolati
dewrmine Ip

I|"'Il_____xl_‘_l'

-[T:-I; yi—y2

I,= 2.64 =274
%=3 Xy = 6.11
%, = 4.355

L=l _Xa—X»
L-Ip Xa=%*b

I,= 2.69

s found (456,
on tEChnique to

: 223
lllumination and Surface Rendering Method |

Introduction to Open_G_L_
——_

91 Introduction

Open Graphics Library (OpenGL) is cross-language .

" 08, cross-platform application programming interface (AP “i[.h

large set of function to create and manipulate 2D and 3D raphics

images. It is also known as graphics rendering AP|

generates high-quality color images composed of geomelyi.
image primitives.

lich
angd

This interface consists of 250 distinct commands (200
core OpenGL and 50 in OpenGL Utility Library) to produce
interactive 3D applications.

OpenGL and Related APIs

[application program

i SRR R
‘ et | | Lyt ;|
v

LX, AG!
% GLU '

or WGL

‘ X, Win32, Mac O/S GL

r I
software and/or hardware

. AGL, GLX, WGL
It’s glue between OpenGL and windowing systems
. GLU (OpenGL Utility Library)
The OpenGL Utility Library (GLU) is a part of OpenGL. It

contains several routines for specific viewing orientations

and projections, performing polygon tessellation, and
rendering surfaces.

GLUT (OpenGL Utility Toolkit)

GLU_T an auxiliary library that provides several routines for
Opening windows, detecting input and creating complicated
3D objects like sphere, torus, and teapot,

224 | Insights on Computer Graphics
-

9 2 Ot,enGL Libraries

A number of libraries exist like OpenGL, OpenGL Utility

Librarys openGL Utility Toolkit, and OpenGL Extension to the X

: d Wrappers for X functi 2
;ndow System an ctions to :
¥ ing tasks,. Stmplify

10
4 GL or OpenGL functions

OpenGL (gl or GL) command uses the prefix gl and initial
capital letters for each word making up the command name. Some
GL functions or commands are as follows:

. glClearColor(...);

. glBegin(...);

. glColor3f(...);

. glVertex3f(...);

« glEnd(...);

« glEnable(...);

. glDisable(...);
Constants:

‘OpenGL defined constants begin with GL_ and use all
capital letters and underscores to separate words.

g GL_COLOR_BUFFER_BIT

Data types

Data type Corresponding OpenGL Type Definition
C Language

8 bit integer signed char GLbyte

16bit integer short GLshort

32bit integer int or long GLint, GLsizei

32 bit float float GLfloat

64 bit float double GLdouble

. GLU or OpenGL Utility Library
The OpenGL Utility Library (GLU) contains several

Outines that use Jower-level OpenGL commands t0 perform such

Introduction to OpenGL | 225

tasks as setting up matrices for specific “'ic"f’iﬂg Orientatigy, ing
projections, performing polygon tesscllatmn,‘ and renderiy,
surfaces. This library is provided e part of every :
implementation. Some GLU functions or commands
follows:

. gluPerspcctivc(,..);

+ gluLookAt(...);
iii. GLUT or OpenGL Utility Toolkit

The OpenGL Utility Toolkit (GLUT) is a window System
independent toolkit written by Mark Kilgard to hide the
complexities of differing window system APIs. OpenGL ¢y,

('}[-’\' T |

dre Ay

only rendering commands and no commands for opening wi .
or reading events from keyboard or mouse. GLUT provides seyery|
routines for opening windows, detecting input and ¢ taling

complicated 3D objects like sphere, torus, and teapot. GLUT i 4,
auxiliary library that makes easy to show the output of Openti|
application. It handles window creation, OS system calls |jke
Mouse buttons, movement, keyboard, Callbacks etc.
GLUT routines use the prefix glut

glutlnit(&arge, argv);

glutInitDisplayMode(...);

glutlnitWindowPosition(.. .);

glutlnitWindowSize(...);

glutCreateWindow(...);

glutDisplayFunc(...);

glutKeyboardFunc(....);

glutMouseFunc();

glutMainLoop(...);

9.3 OpenGL Program Structure .]

The basic OpenGL Programs have a similar structurc

follows.
main()

* Define the callback functions

* Opens one or more windows with the required pt'opcr“‘:"‘“_
ﬂlmm G —

« Enter event loops
e Inmain(), we should setup GL and GLUT stuff
Init ()
It Initialize any OpenGL state and other program variable.
« Viewings
e Attributes

Callback Functions
Initialize the registered Callback functions

The basic OpenGL application structure is as follow
(i) Configure and open window and Initialize OpenGL state
; We do this in main ()
E g,
/* OpenGL initialization code */
glutInit(&argc, argv);
/* Specify the display Mode — RGB or color Index, single or
double Buffer */

glutInitDisplayMode(
GLUT_DEPTH|GLUT_DOUBLE|GLUT_RGBA);

/* Create a window Named “simple GLUT Application’
with starting point (100,100) with resolution 640 x 480 */

glutinitWindowPosition(100, 100);
glutlnitWindowSize(640,480);
glutCreateWindow("Simple GLUT Application™);
(ii) Register input callback functions

We do this in main()

+ render

+ tesize

+ input: keyboard, mouse, etc.

E.g.,
/*Register the call back functions */
glutDisplayFunc(render);

Introduction to OpenGL | 227

glutKeyboardFunc(keyboard);
glutMouseFunc(mouse); (iv) Enter event processing loop
(i) The callback function code We do this in main()
We do this before main() function, E.g., E. g,
void render(void) f‘T:lf program goes into an infinite loop waiting for events
{ o
glClear(GL_COLOR_BUFFER_BIT|GL_DEPT} BUFFR glutMainLoop();
R_BIT); ' Simple OpenGL Program to draw a Triangle
glBegin(GL_TRIANGLES); /* program to draw a triangle*/
glColor3£(1,0,0); #include<windows.h>
glVertex2f(-0.5,-0.5); #ifdef APPLE__
glColor3(0,1,0); #include <GLUT/glut.h>
glVertex2£(0.5,-0.5); . #f:lse
glColor3£(0,0,1); . #include <GL/glut.h>
S #endif
ert .0,0.5); .
12“; 'cxzf(o - #include <stdlib.h>
;) i ' void render(void)
' {

void keyboard(unsigned char c,int x, int) glClear(GL_COLOR_BUFFER_BIT|GL DEPTH BUFFE

{ 'R_BIT);
iffc= ="a") glBegin(GL_TRIANGLES);
{ : | glColor31(1,0,0);
exit(0); glVertex2f(-0.5,-0.5);
} glColor3£{(0,1,0);
} - glVertex2f(0.5,-0.5);
void mouse(int button, int state, int x, int y) glColor3f(0,0,1);
{ glVertex2£(0.0,0.5);
if(button = = GLUT_RIGHT__BU'I‘TON) . glEnd();
{ }
exit(0); void keyboard(unsigned char c, int x, int y)
y ; : :
} ific = ="a)
- {
228 | Insights on Computer Graphics Introduction to OpenGl. | 229

—

exit(0);
}
}

void mouse(int button, int state, int X, int y)

{
if(button = = GLUT_RIGHT BUTTON)

{

exit(0);
H

}

nt main(int arge, char* argv[])

{

/* OpenGL initialization code (Optional) */
glutInit(&arge, argv);

/* Specify the display Mode — RGB or color Index, singlc or

double Buffer */
glutnitDisplayMode(
GLUT_DEPTHIGLUT_DOU'BLE|GLUT‘_RGBA);

/* Create a window Named “simple GLUT Application”

with starting point (100,100) with resolution 640 x 480 *
glutinitWindowPosition(100, 100);
glutlnitWindowSize(MOASD);
glutCreateWindow("Simple GLUT Application");
/*Register the call back functions */
g]utDisp!ayFunc(render};
glutKeyboardFunc(keyboard);

glutMouseF: unc(mouse);

/*The pro i infini
by program goes into an infinite loop waiting for events

glutMainLoop();

230 | Insights on Computer Graphics -

N

9.3.1

Window Management

Five routines that perform necessary tasks to initialize a

window are as follows:

9.3.2

glutInit(int *argc, char **argv) or glutlnit(&arge, argv)
initializes GLUT and processes. glutlnit() should be called
before any other GLUT routine.

glutinitDisplayMode(unsigned int mode), e.g, glutlnit
DisplayMode(GLUT_DEPTH|GL.UT_DOUBLE|GLUT__RG
BA) specifies whether to use an RGBA or color-index color
model. We can also specify whether we want a single- or
double-buffered window. (If we're working in color-index
mode, we'll want to load certain colors into the color map;
we use glutSetColor() to do this.) Finally, we can use this
routine to indicate that we want the window to have an
associated depth, stencil, and/or accumulation buffer. For
example, if we want a window with double buffering, the
RGBA color model, and a depth buffer, we might call
glutnitDisplay Mode(GLUT_DOUBLE | GLUT RGB |
GLUT_DEPTH).

glutlnitWindowPosition(int x, int y), e.g., glutlnitWindow

Position(100, 100) specifies the screen location for the
upper-left corner of the window.

glutlnitWindowSize(int width, int size), eg., glutlnitWindow
Size(640,480) specifies the size, in pixels, of the window.

int glutCreateWindow(char *string) or eg, glutCreate
Window("Simple GLUT Application") creates a window
with an OpenGL context. It returns a unique identifier for
the new window. Until glutMainLoop() is called, the
window is not yet displayed. The glutMainLoop() makes the
program goes into an infinite loop waiting for events.

Callback Function

Callback function is user-defined function used to react on

specific event like to redraw window, to react on keyboard, to

Introduction to OpenGL | 231

handle mous¢ motions etc. We have 10 egister callback Tl
betore to use it.

A callback function 15 a function which the library
sills whea it needs to know how to process something, | o
olut gets a key down event it uses the glutKey bourdpy,
Eslfhai‘k routine to find out what to do with a key press b

The elutKeyboardFunc() deals with events genera

kevs which have an ASCII code, for instance @' 'l'. or ¢,
glutSpecialFunc() deals with the "special keys". like |,
Home, Up, etc. '
The Display Callback function

. glutDisplayFune(void (*func)(void)) or eg., glutDispla, Fung

Here
function render is registered. We write the code in ru-r:dlL:.::
function for the graphics we want to display. Whepeyor
GLUT determines the contents of the window need (o he
redisplayed, the callback function registered b
glutDisplayFunc() is executed. Therefore, we should pur 4l
the routines we need to redraw the scene in the displa
callback function.

* If our program changes the contents of the window.
sometimes we will have to call glutPostRedisplay(void).
which gives glutMainLoop() a nudge to call the registered
display callback at its next opportunity.

* We can register and call the function for action when any
key is pressed or mouse button is pressed using
ﬂ“‘KWh“WdFUMO and glutMouseFunc() respectively.
Allc{w us to link a keyboard key or a mouse button with @
foutine that’s invoked when the key or mouse button i
pressed or released,

. -
s]c::n“mflhu:c(void (*func)(int w, int h)) indicates wh!

. taken when the window is resized.

b aging 2 Background Proces: ghldcFunci(*func)(v0)
_ Ma function that's to be executed if no othe’

(render) is most important event callback function

2321 Insights on ComputerGraphics

events are pending. This routine takes a pointer to a function
as its only argument

GLUT Callback function

Event-driven: Programs that use windows

[]
» Input/Output
» Wait until an event happens and then execute some pre-
defined functions according to the user’s input
» Events — key press, mouse button press and release,
window resize, etc.
. Callback function : Routine to call when an event happens
» Window resize or redraw
» User input (mouse, keyboard)
» Animation (render many_ﬁ‘ames)
“Register” callbacks with GLUT
» glutDisplayFunc(my_ display func);
» glutldleFunc(my_idle_func);
» glutKeyboardFunc(my key events func);
» glutMouseFunc (my_mouse_events_func);
Event Queue
'Keyboard
Event queue e
Mouse

MainLoop() m _
\ Window

"
.,

> glutKeyboardFunc() — register the callback that will be
called when a key is pressed

> glutMouseFunc() — register the callback that will be
called when a mouse button is pressed

Introduction to OpenGL | 233

JutMotionFunc() — register the callback (};,
> 8

alled when the mouse is in motion whle |
c

pressed
. glutldleFUﬂC{) - register the callback that wij| |
5

when nothing is going on (no event)

e

Rendering Callback
o Callback function where all our drawing is done

o Every GLUT program must have a display callbyg|,
o glutDisplayFunc(my_display_func). /*
main.c */
void my_display_func (void)
{
glClear(GL_COLOR_BUFFER_BIT):
glBegin(GL_TRIANGLE);
glVertex3fv(v[0]);
glVertex3fv(v[1]);
glVertex3fu(v[2]);
glEnd();
glFlush();
}
Idle Callback
* Use for animation and continuous update
Can use glutTimerFunc or timed callbacks for animations
* glutldleFunc(idle);
void idle(void)
{

this Parl g i

/* change something */
t+= dt;
glutPostRedisplay{);
H
User Input Callbacks
» Process user input
> glutKeyboardFunc(my key events);

e i e
234 | Insights on Computer Graphics

void my_key_events (char key, int x, int y)

switch (key) {
case ‘q" : case ‘Q’:
exit (EXIT_SUCCESS);
break;
case ‘r’ : case ‘R’ :
rotate = GL_TRUE;
break;

}
Mouse Callback
» Captures mouse press and release events
» glutMouseFunc(my_mouse);
void myMouse(int button, int state, int x, int y)

{if (button = = GLUT_LEFT BUTTON && state = =
GLUT_DOWN)
{-}
}
Events in OpenGL
" Event Example OpenGL Callback Function
Keypress (KeyDown glutKeyboardFunc
KeyUp

Mouse |leftButtonDown [glutMouseFunc
_____[leftButtonUp
Motion (With mouse press |glutMotionFunc
] Without AI_gIEtPassiveMotionFunc
Window Moving glutReshapeFunc
—_ |Resizing
System [fle glutldleFunc
Wﬁmﬂ glutTimerFunc
——are |What to draw glutDisplayFunc

Introduction to OpenGL | 235

mdmdmngm

call glutMamlmp(vmd) The glu

goes into an infinite loop waiting g,

mwsthathﬂwmmmno“psho“m’

those windows is now effective. g

begins, and the registered display callback
mmed_onoetlns loop is entered, it is never exited!

94 Open GL Geometric Primitives

Thegeomet:yzsspeclﬂﬂdb}'verhces There are differey

94.1 Vertices and Primitives

Primitives

are specified using

glEnd();

primitive types:
GL_POINTS
GL_LINES
GL_TRIANGLES
GL_POLYGONS
OpenGL Command Format
glVertex3fv(v)
Nomber of Data Type Vector
camponents ; : byta omit “v* for
2=ty mnaigned byts scalar form
3= imya - :. : short
i 1D haigmed shest| | givertex2f(x, ¥)
ui - unsigned int
£ = float
d - double

> mﬁwwﬁmneshowvemmarecombmed
GLfloat red, green, blue;

-__,—.-l-'-'-'—-!

lor3fv(color);
glVertex2f(p0.x, POy)i
d\{malﬁ pLx,PLy)
gVertex2fl P2.X, Py);
glvertex2f(P3.x, Py)
glVertex2fl P4.X, P4y);
glVertex2f{ PS.x, P3.y)
gIVertex2fi P6.x, P6.y)i
glVertex2fi P7.X, PlLy)

glEnd(); - .

ji. Lines, GL_LINES
, Pairs of vertices interpreted as individual line segments
» Can specify line width using;
« glLineWidth(float width)
glBegin(GL_LINES);
glColor3fv(color);
glVertex2f(PO.x, PO.y);
glVertex2f(P1.x, PLy);
glVertex2f(P2.x, P2y);
glVertex2f(P3.x, P3.y);
“glVertex2f(P4.x, P4.y);
glVertex2f({ PS.x, PS.y);
glVertex2f(P6.x, P6.y);
gVertex2f(P7.x, Py);
glEnd();

I mewmmmmmg][;m"%

| commands are allowed: |
"""" glVertex*(): set veriex coordinates

% leo;a-U:selcmmlm‘

, 'Imo{):sﬂmvol{Iim

> giNormal*() : set normal vector coordinates (L ig, |
» glTexCoord®() : set texture coordinates (Texture)

95 Color Command o

OpenGL supports both RGBA and color indey um‘: In.
general, an OpenGL programmer first sets the color or calonpg
scheme and then draws the objects. Unul the color of colariq

: . - B
scheme is changed, all objects are drawn n that color or using
coloring scheme.

To set a color, use the command glColor3fi). It takes three
parameters, all of which are floating-point numbers between ()
and 1.0. The parameters are, in order, the red, green, and bl
components of the color. You can think of these three values «
specifying a "mux" of colors: 0.0 means don't use any of thy
component, and 1.0 means use all you can of that component
Thus, the code

glColor3f(1.0, 0.0, 0.0); makes the brightest red the system
can draw, with no green or blue components. All zeros makes
black; in contrast, all ones makes white. Setting all three
components to 0.5 yiclds gray (halfway between black and white)
Here are cight commands and the colors they would set

glColor3f{0.0, 0.0, 0.0); black

' glColor3{1.0, 0.0, 0.0); red

8iColor30.0, 1.0, 0.0); green

giColor3f(1.0, 1.0, 0.0); yellow

giColor3f{0.0, 0.0, 1),

8IColor3f(1.0, 0.0, 1.0);

| E'COh}i[O.O,],o,]_ok
i &lColor3fi 1.0, 1.0, 1 g,

e G

blue
magenta
cyan
white

——d]

H

void init (void) .
{ /* select clearing (background) color */
glClearColor (0.0, 0.0, 0.0, 0.0);
' /* initialize viewing values */
[gIMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0); }
‘,l’#
* Declare initial window size, position, and display mode
* (single buffer and RGBA). Open window with "hello"
* inits title bar. Call initialization routines,
* Register callback function to display graphics.
* Enter main loop and process events, */
int main(int argc, char** argv)
{
gluthnit(&arge, argv);
gluthnitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutlnitWindowSize (250, 250);
gluthnitWindowPosition (100, 100);
glutCreateWindow ("hello");
init ();
glutDisplayFunc(display); -
glutMainLoopy();
retun 0; /* ISO C requires main to return int. */
: ;

9.6 GL viewin
* InOpenGL the model ~ View matrix is used to position "1;
camera (ie. viewing), it can be done by rotations an

translation but is easier to use gluLookat (), and to build
models of objects,

formation, these clip coordinates are not ready to by
transio , ‘ . ,
normalized device coordinates just yet.

Transformation command

glMatrileode() -
es the model view, projection or texture iy

. It specifi . .
modification passing the argument GL_M()I)!.!.\'“.“\
GL_PROJECTION, GL_TEXTURE

o+ Only one matrix can be modified at a time

glLoadldentity (),

. It sets the currently modifiable matrix to identity marri«

Viewing transformation

. gluLookAt (eye.x, eye.y, €ye.z, Center.x, center.y, cenlery,
Up.X, Up.y, up.z)

. The argument of this command indicates where the comery
(or eye position) is placed, where it is aimed and which way
is up.

. Viewing direction is center to eye.

. Up is the upward direction.

. Viewing direction and up vector indicates eye co-ordinalc
system.

x-axis points to the right of viewer.
y-axis points to upward.
z-axis points to the back of viewer.
Viewport transformation
® The viewport transformation in openGL is controlled by
fucntion glviewport (GLint x, GLint y, GLintsizei width:
GLintsizei height)
It is used to set the size and position of the viewport.
3 T{k (%, y) defines the lower left corner of the viewport 40
width and height are the size of the viewport rectangle.

wlﬁul‘lmenhnmm

The Viewing Transformation example

The viewing transformation is analg
aiming 8 camera. In this code example, befor the view;
transfgm‘iatiﬂn ca.n be 'specified, the current matrix i SeTIEWIng
i dentity matrix with glLoadldentity(). This ste i
most of the n‘ansfonn.ation commands multiply the current matrj
by the specified matrix .and then set the result to be the currcu’:
matrix. If you don't clear the current matrix by loading it with the
identity matrix, you continue to combine previous transformation
matrices with the new one you supply.

In the following example, after the matrix is initialized, he
viewing -transformation is specified with gluLookAt(). The
arguments for this command indicate where the camera (or eye
position) is placed, where it is aimed, and which way is up. The
arguments used here place the camera at (0, 0, 5), aim the camera
lens towards (0, 0, 0), and specify the up-vector as (0, 1, 0). The
up-vector defines a unique orientation for the camera.

If gluLookAt() was not called, the camera has a default
position and orientation. By default, the camera is situated at the
origin, points down the negative z-axis, and has an up-vector of (0,
1, 0). So in this example, the overall effect is that gluLookAt()
moves the camera 5 units along the z-axis.

20us to Positioning ang

P 1S necessary since

OpenGL program to draw a Transformed Cube:
#include <GL/gl.h>

#include <GL/glu.h>
#include <GL/glut.h>

voidinit(void)

{ glClearColor (0.0, 0.0, 0.0; 0.0);
glShadeModel (GL_FLAT);

} ! .

void display(void)

{ glClear (GL_COLOR_BUFFER_BIT):
glColor3f (1.0, 1.0, 1.0);

Introduction to OpenGL | 245

B

-

o

, ?7. T —

L oadidentity 0 /# clear the matrix ¥/
g

/* viewing transformation
0,00,5.0,00, 0.0, 0.0,0.0, 1.0, 0.0):

0. Transformation function in open GL
Translation

*/
1.

gluLookAt (0 , tef (tx
Scalef (1.0, 2.0, 1.0 /* modeling transformati, - WimsiiTLA
. giaeERa A L0) where tx, ty, tz are translation co-ordinate
;|i glutwlreCubE(0); ii. Rotation
glFluSh {]; glRDtateﬁA, XY, Z}a

| !i } ‘ where A is angle of rotation

' void reshape (int w, int h) iii. Scaling

| { _ . glscalef (float x, float y, float z)

: i rt (0, 0, (GLsizei) w, (GLsizei) h); e

\ | glViewport (0,0, ()W, (i) h); 97 Lighting in OpenGL

|| g[MatrixMode (GL_PROJECTION); =
To describe light in an OpenGL application, first, we have to

{ glLoadldentity (); o
| enable the lighting system by using glEnable(GL_LIG
. 3) _ (GL_LIGHTING
‘ glFmst.um{ 1.0, 1.0,-1.0, 1.0, 1.5, 20.0); glEnable(GL_LlGHTﬂ) then we need to perform two steps: s:ﬁﬁg
¢IMatrixMode (GL_MODELVIEW); lighting and the shading models. o
} _ .r?' Enable the lighting system
[int main(intargc, char** argv) : glEnable(GL_LIGHTING);
{ glEnable(GL_LIGHTO0);
glutInit(&argc, argv);
!. glutinitDisplayMode (GLUT SINGLE | GLUT_RGB); /I Create light components
g]uL[nTtWTHdDijze (500, 500); Glfloat ambientLight[] = { 0.2f, 0.2f, 0.2f, 1.0f };
glutlnitWindowPosition (100, 100); Glfloat diffuseLight{] = { 0.8f, 0.8, 0.8, 1.0f };
iiu:geateWmdow (argv[0]); Glfloat specularLight[] = { 0.5f, 0.5f, 0.5f, 1.0 };

: Glfloat position[] = { -1.5f, 1.0f, -4.0f, 1.0f };
EiutDlsplayFunc(display}; ' it e
glutReshapeFun. . .

. c(reshape); /l Assign created components to GL_LIGHTO0
glutMainLoop(); ILi .
; glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight);

return 0; i
gmlghtfv(GL_LlGHTﬂ, GL _DIFFUSE, diffuseLight);

gllightfv(GL_LIGHTO0, GL_SPECULAR, specularLight);
glLightfv(GL_LIGHTO, GL_POSITION, position);

\ E i
“'w""mhm__ —— 5

Introduction to OpenGL | 247 g

— SR |

Defining light sourc |
OpenGL allows a maximum of 8§ light sources i seeng

of all, we have to enable the lighting system on the v, hole B
Enable(GL_LIGHTING) and glEnable(GL [¢, T,
number of the color you are enabling, g :

First
calling glEnab

here n is the index _ ; ' ing
:om 0 to 7. It should be obvious that to specify a light g,

pumber 1 we should use GL_LIGHTO. By order, the ligh; -
number 8 is specified as GL_LIGHT7.

gIDisable(int cap) function disables whatever proper,

were previously set with glEnable.

To set a specific light type and enable it in 3D scene, i
each one of the light sources we need to call the glLightfv funciiop
with parameters which specify the what, and more importanily the
how. To add a component of specular light to a light source, vou
would make the following function call:

GLfloat specular(] = {1.0f, 1.0f, 1.0f, 1.0f};
¢lLightfv(GL_LIGHT0, GL_SPECULAR, specular);

GL_LIGHTO is light source and the specular shading model
is described by the GL_SPECULAR parameter and the GLiloat
specular parameter defines properties of the specular reflection that
are setting up for the GL_LIGHTO light source. specular[] is a 4
parameter array. The parameters are described as:

specular] = { floatRed, floatGreen, floatBlue, floatAlpha |:

The first three parameters are the RGB values which can
range from anywhere between 0.0f and 1.0, 0.0f being no color
and 1.0f being full color. The fourth parameter ‘floatAlpha’ in the

array fs used for an EMISSIVE light component to modify af
object’s material’s alpha value.

of the E:am;riflughm mechanism can be used to specify 4"

i A s shading models. For example, to set and e:wh'f

Ambient Light gt;l component of a light source so that it e

B=0.5f) we of moderately pale white color (R=0.5f, G=0-"
can use the followmg call and parameters:

mmw‘——-——_.-

GLfloat ambient[] = { 1.0f, 1.0f, 1.0f };
gmightﬁ(GL_LlGHTU, GL_AMBIENT, ambient

We also have to specify the position of the Jigh
be done, similarly to defining light componen
function in the following way:

);

source, And

this can ts, with the

glLight 0%
Glfloat position[] = { -1.5f, 1.0f, -4.0f, 1.0f }.

glLigbtfv(GL__LIGHTO, GL_POSITION, position);

The lighting model

The lighting model is set up with a call to glLightMode
The visual behavior of the lighting model is specified by the.
function glLightModel. There are two types of this function. One
(hat uses scalar values as parameters and one for use with vector
valued as parameters. Here are the definitions of both functions:

glLightModelf(GLenum pname, GLfloat param); // scalar

params
glLightModelfv(GLenum pname, const GLfloat *params); //
vector params

To define a light source, in OpenGL for Ambient Light,
Diffuse Light, Specular Light and Emissive Light, OpenGL uses
four models: GL_AMBIENT, GL _DIFFUSE, GL SPECULAR
and GL_EMISSIVE respectively. -

For enabling the global ambient light model for the whole
scene GLOBAL_AMBIENT LIGHT MODEL is used, which tells
OpenGL that we want a global ambient light model set. The color
of the global ambient light is set as:

Glfloat global ambient[] = { 0.5f, 0.5f, 0.5f, 1.0f };

s g)mightl\/lodelﬁr(GL_LIGHT MODEL_AMBIENT,global_a
1ent); = =

The shading model

up th setting up light model the next step is usually setting
© shading model. This is done by calling glShadeModel. Here,

W
€ use the Smooth shading model

Introduction to OpenGL | 249

nghachodel[GL_SMOOTH):
After this call, all of “}B polygogs will be smoothly Shadeg
by using the Gouraud-shadmg‘techmq_ue and ﬂg‘t‘m'di.,g © g
nearby light sources and polygon's material properties,

The shading model is set up with a call to glShadeMo ang
can be either set 10 SMOOTH or FI:AT model. The SMy Y
shading model specifies the use of. Uouraud—shad(?d polygons 1,
describe light while the FLAT shading model specifies the .
single-colored polygons.

g]ShadeModcl{int mode) selects the polygon shading o
mode is the flag representing the shading mode. This flag cay be
set to either GL_FLAT or GL_SMOOTH.

g

GL_SMOOTH shading is the default shading model, causes
the computed colors of vertices to be interpolated as the primitive
is rasterized, assigning different colors to each resulting pixel
fragment. GL_FLAT shading selects the computed color of just
one vertex and assigns it to all the pixel fragments generated by
rasterizing a single primitive.

In either case, the computed color of a vertex is the result of

lighting, if lighting is enabled, or it is the current color at the time
the vertex was specified, if lighting is disabled.

The lighting model of OpenGL is based on the Gouraud
Shading implementation. A specific color is assigned to each of the
Vﬂ:t_ices in a polygon. This color is calculated according to the
object’s material properties and surrounding light sources. Then
the colors at each of the 3 vertices are taken and interpolated across
the whole polygon.

o Wn

Bibliography;
ponald D. Hearn and M. .Pauline Baker
Gmphics”, (Second Edition) *
Foley, Van Dam, Feiner, Hughes “Comput _
P,-inciples and Practice”, (Second Edition in Q) et Graphics
udit Agrawal, “COMPUTER GRAPHICS”
Edition)
Rajiv Chopra, “COMPUTER GRAPHICS(A PRACTICAL
APPROACH)”, (Third Edition)
Neeta Nain, “COMPUTER GRAPHICS”, (First Edition)
G. S. Baluja, “COMPUTER GRAPHICS”, (Revised Edition
2008)

“Computer

(Fourth

Introduction to OpenGL | 251

 —— iabPlam i
Subject: Computer [j — completion of
Subject Teacher: Shree Graphlcs -““' | Tab: |
:shna Sulu S ————— Mark:g, .+ point Ellipse Student would be |Co
[Krishna SU0_____——— : = -Poin mputer
gro,;éram Computer and | py, 5 I:[I:ori thm able to draw a Lab | TurboC
Year/Part V1 ELX. [markiyg | mid point ellipse
S| o | Require using the
N Tltle Oh_lecu“'es Lab ——;——!!I'_‘:" i algorithrns
i afim ot e BN EE Alterthe
: .| compictiona - . completion of
Introduction toﬁil‘ a?hlcs Lab: Comput : Iiab'
libra (o [V)1 - e p— oLy : ; =]
3 - ! Tm')r{ijael‘izling gaphics Students would Lab Furbo Two Dimensional Students would be| Computer T
| ini : have the_ concept . 6 Taiah tions able to program Lab urbo C
| s of graphics mode | about two
1 and initialize it . dimensional
| After _thc algorithm
. : completion of — After the
Lab: completion of
_— Students would be| Computer Tutbo ¢ . i
2 DDA Algort bl to diiiiv lines Lab s ; Basic].me-'mg Stdents Would be Computer| Code
using DD'AC Technique in OpenGL able to draw lines, Lab Block
a]glorlthm 1: polygons in
anguag nGL
After the Opc =
completion of
Lab:
- : Student would be | Computer| . .\ ¢
3 |Bresenham's Algorithm oble to drawa line| Lab
using
Bresenham's
algorithm ___/J
After the
completion of
Lab: :
Mid-Point Circle Student would be uter| 4+ 1.4 C ‘
4 Algorithm able to draw a Corlr‘lsb Furbo ¢
mid point circle |
using the
algorithms

252 | Insights on Computer Graphics e

Introduction to OpenGL | 253

Silence' and 'smile’ are two powerful words. Smile'is tfﬁe way to
solve many problems and 'silence'is the way to avoid many
problems.

Our Other Publications on Engineering

ELECTRONIC
DEVICES & CIRCUITS

INSTRUMENTATION - II

SYSTEM INCEPTION Price Rs. 330/-

